Abstract
In this paper we describe the learning and reasoning mechanisms of a cognitive model based on the systemic approach and on the autopoiesis theory. These mechanisms assume perception and action capabilities that can be captured through propositional symbols and uses logic for representing environment knowledge. The logical theories are represented by their conjunctive and disjunctive normal forms. These representations are enriched to contain annotations that explicitly store the relationship among the literals and (dual) clauses in both forms. Based on this representation, algorithms are presented that learn a theory from the agent’s experiences in the environment and that are able to determine the robustness degree of the theories given an assignment representing the environment state.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bibel, W.: Let’s plan it deductively. In: Proceedings of IJCAI, Nagoya, Japan, August 23-29, vol. 15, pp. 1549–1562. Morgan Kaufmann, San Francisco (1997) (ISBN 1-55860-480-4)
Bittencourt, G.: In the quest of the missing link. In: Proceedings of IJCAI, Nagoya, Japan, August 23-29, vol. 15, pp. 310–315. Morgan Kaufmann, San Francisco (1997) (ISBN 1-55860-480-4)
Bittencourt, G., Marchi, J.: A syntactic approach to satisfaction. In: Konev, B., Schmidt, R. (eds.) Proceedings of the 4th International Workshop on the Implementation of Logics, University of Liverpool and University of Manchester, pp. 18–32 (2003)
Bittencourt, G., Perrussel, L., Marchi, J.: A syntactical approach to revision. Accepted to ECAI 2004
Bittencourt, G., Tonin, I.: An algorithm for dual transformation in first-order logic. Journal of Automated Reasoning 27(4), 353–389 (2001)
Brooks, R.A.: Intelligence without representation. Artificial Intelligence (Special Volume Foundations of Artificial Intelligence) 47(1-3), 139–159 (1991)
Damasio, A.R.: Descartes’ Error: Emotion, Reason, and the Human Brain. G.P. Putnam’s Sons, New York (1994)
Darwiche, A., Marquis, P.: A perspective on knowledge compilation. IJCAI, 175–182 (2001)
Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer, New York (1990)
Ginsberg, M.L., Parkes, A.J., Roy, A.: Supermodels and robustness. In: Proceedings of AAAI 1998, pp. 334–339 (1998)
Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)
Kean, A., Tsiknis, G.: An incremental method for generating prime implicants/implicates. Journal of Symbolic Computation 9, 185–206 (1990)
Lespérance, Y., Levesque, H.J., Lin, F., Marcu, D., Reiter, R., Scherl, R.B.: A logical approach to high level robot programming – a progress report. In: Kuipers, B. (ed.) Working notes of the 1994 AAAI fall symposium on Control of the Physical World by Intelligent Systems, New Orleans, LA (November 1994)
Levesque, H., Pirri, F., Reiter, R.: Foundations for the situation calculus (1998)
Maturana, H.R., Varela, F.J.: Autopoiesis and cognition: The realization of the living. In: Cohen, R.S., Wartofsky, M.W. (eds.) Boston Studies in the Philosophy of Science, vol. 42, D. Reidel Publishing Co., Dordecht, Holland (1980)
Morin, E.: La Méthode 4, Les Idées. Editions du Seuil, Paris (1991)
Murray, N., Ramesh, A., Rosenthal, E.: The semi-resolution inference rule and prime implicate computations. In: Proc. Fourth Golden West International Conference on Intelligent Systems, San Fransisco, CA, USA, pp. 153–158 (1995)
Newell, A.: The knowledge level. Artificial Intelligence 18, 87–127 (1982)
Parkes, J.: Clustering at the phase transition. In: AAAI/IAAI, pp. 340–345 (1997)
Ramesh, A., Becker, G., Murray, N.V.: CNF and DNF considered harmful for computing prime implicants/implicates. Journal of Automated Reasoning 18(3), 337–356 (1997)
Scherl, R., Levesque, H.J.: Knowledge, action, and the frame problem. Artificial Intelligence 1(144), 1–39 (2003)
Shanahan, M.: Explanation in the situation calculus. In: Bajcsy, R. (ed.) Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, San Mateo, California, pp. 160–165. Morgan Kaufmann, San Francisco (1993)
Slagle, J.R., Chang, C.L., Lee, R.C.T.: A new algorithm for generating prime implicants. IEEE Transactions on Computing 19(4), 304–310 (1970)
Socher, R.: Optimizing the clausal normal form transformation. Journal of Automated Reasoning 7(3), 325–336 (1991)
Varela, F.J.: Autonomie et Connaissance: Essai sur le Vivant. Editions du Seuil, Paris (1989)
Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In: Proceedings of 8th International Conference on Computer Aided Deduction(CADE 2002) (invited Paper)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marchi, J., Bittencourt, G. (2004). Propositional Reasoning for an Embodied Cognitive Model. In: Bazzan, A.L.C., Labidi, S. (eds) Advances in Artificial Intelligence – SBIA 2004. SBIA 2004. Lecture Notes in Computer Science(), vol 3171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28645-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-28645-5_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23237-7
Online ISBN: 978-3-540-28645-5
eBook Packages: Springer Book Archive