Abstract
A challenge in hybrid evolutionary algorithms is to define efficient strategies to cover all search space, applying local search only in actually promising search areas. This paper proposes a way of detecting promising search areas based on clustering. In this approach, an iterative clustering works simultaneously to an evolutionary algorithm accounting the activity (selections or updatings) in search areas and identifying which of them deserves a special interest. The search strategy becomes more aggressive in such detected areas by applying local search. A first application to unconstrained numerical optimization is developed, showing the competitiveness of the method.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yen, J., Lee, B.: A Simplex Genetic Algorithm Hybrid. In: IEEE International Conference on Evolutionary Computation ICEC 1997, pp. 175–180 (1997)
Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer Journal 7(23), 308–313 (1956)
Birru, H.K., Chellapilla, K., Rao, S.S.: Local search operators in fast evolutionary programming. Congress on Evolutionary Computation 2, 1506–1513 (1999)
Oliveira, A.C.M., Lorena, L.A.N.: Real-Coded Evolutionary Approaches to Unconstrained Numerical Optimization. Advances in Logic, Artificial Intelligence and Robotics. In: Abe, J.M., da Silva Filho, J.I. (eds.), Plêiade, vol. 2 (2002) ISBN: 8585795778
Chelouah, R., Siarry, P.: Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions. Euro. Journal of Operational Research 148(2), 335–348 (2003)
Jelasity, M., Ortigosa, P., García, I.: UEGO, an Abstract Clustering Technique for Multimodal Global Optimization. Journal of Heuristics 7(3), 215–233 (2001)
Li, J.P., Balazs, M.E., Parks, G.T., Clarkson, P.J.: A species conserving genetic algorithm for multimodal function optimization. Evolutionary Computation 10(3), 207–234 (2002)
Yager, R.R.: A model of participatory learning. IEEE Trans. on Systems 20(5), 1229–1234 (1990)
Silva, L.R.S.: Aprendizagem Participativa em Agrupamento Nebuloso de Dados, Dissertation, Faculdade de Engenharia Elétrica e de Computação, Unicamp, Campinas SP, Brasil (2003)
Glover, F., Laguna, M., Martí, R.: Fundamentals of scatter search and path relinking. Control and Cybernetics 39, 653–684 (2000)
Bersini, H., Dorigo, M., Langerman, S., Seront, G., Gambardella, L.M.: Results of the first international contest on evolutionary optimisation - 1st ICEO. In: Proc. IEEE-EC 1996, pp. 611–615 (1996)
De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems, Ph.D. dissertation, University of Michigan Press, Ann Arbor (1975)
Digalakis, J., Margaritis, K.: An experimental study of benchmarking functions for Genetic Algorithms. In: IEEE Systems Transactions, pp. 3810–3815 (2000)
Goldberg, D.E.: Genetic algorithms in search, optimisation and machine learning. Addison-Wesley, Reading (1989)
Eshelman, L.J., Schawer, J.D.: Real-coded genetic algorithms and intervalschemata. In: Darrell Whitley, L. (ed.) Foundation of Genetic Algorithms-2, pp. 187–202. Morgan Kaufmann Pub., San Francisco (1993)
Michalewicz, Z.: GeneticAlgorithms + DataStructures = EvolutionPrograms. Springer, New York (1996)
Hooke, R., Jeeves, T.A.: “Direct search” solution of numerical and statistical problems. Journal of the ACM 8(2), 212–229 (1961)
Laguna, M., Martí, R.: The OptQuest Callable Library. In: Voss, S., Woodruff, D.L. (eds.) Optimization Software Class Libraries, pp. 193–218. Kluwer Academic Pub., Dordrecht (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Oliveira, A.C.M., Lorena, L.A.N. (2004). Detecting Promising Areas by Evolutionary Clustering Search. In: Bazzan, A.L.C., Labidi, S. (eds) Advances in Artificial Intelligence – SBIA 2004. SBIA 2004. Lecture Notes in Computer Science(), vol 3171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28645-5_39
Download citation
DOI: https://doi.org/10.1007/978-3-540-28645-5_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23237-7
Online ISBN: 978-3-540-28645-5
eBook Packages: Springer Book Archive