Skip to main content

A Fractal Fuzzy Approach to Clustering Tendency Analysis

  • Conference paper
Advances in Artificial Intelligence – SBIA 2004 (SBIA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3171))

Included in the following conference series:

  • 2845 Accesses

Abstract

A hybrid system was implemented with the combination of Fractal Dimension Theory and Fuzzy Approximate Reasoning, in order to analyze datasets. In this paper, we describe its application in the initial phase of clustering methodology: the clustering tendency analysis. The Box-Counting Algorithm is carried out on a dataset, and with its resultant curve one obtains numeric indications related to the features of the dataset. Then, a fuzzy inference system acts upon these indications and produces information which enable the analysis mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barnsley, M.: Fractals Everywhere. Academic Press Inc., San Diego (1988)

    MATH  Google Scholar 

  2. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)

    Google Scholar 

  3. Can, F., Altingovde, Demir, E. I. S.: Efficiency and effectiveness of query processing in cluster-based retrieval. Information Systems 2003 (to appear)

    Google Scholar 

  4. Castro, L.N., Voz Zuben, F.J.: aiNet: an artificial immune network for data analysis. In: Data Mining: A Heuristic Approach, pp. 231–259. Idea Group Publishing, USA (2001)

    Google Scholar 

  5. Feeny, B.F.: Fast multifractal analysis by recursive box covering. International Journal of Bifurcation and Chaos 10(9), 2277–2287 (2000)

    Article  MATH  Google Scholar 

  6. Jain, K.J., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Inc., New Jersey (1988)

    MATH  Google Scholar 

  7. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  8. Kruger, A.: Implementation of a fast box-counting algorithm. Computer Physics Communications 98, 224–234 (1996)

    Article  MATH  Google Scholar 

  9. Massey, L.: Applications and Science in Soft Computing. In: Using ART1 Neural Networks to Determine Clustering Tendency, Springer, Heidelberg (2003)

    Google Scholar 

  10. Peitgen, H.O., Jurgens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Science. Springer, Heidelberg (1992)

    Google Scholar 

  11. Peres, S.M., Netto, M.L.A.: Using fractal dimension to fuzzy pre-processing of n-dimensional datasets. In: ICSE 2003 - Sixteenth International Conference on System Engineering, Conventry, United Kingdom (2003) (accepted to)

    Google Scholar 

  12. Peres, S.M., Netto, M.L.A.: Fractal fuzzy decision making: What is the adequate dimension for self-organizing maps. In: NAFIPS 2004 - North American Fuzzy Information Processing Society, Banff, Canada (2004) (to appear)

    Google Scholar 

  13. Peres, S.M., Netto, M.L.A.: Um sistema hibrido para analise heuristica de dados utilizando teoria de fractais e raciocinio aproximado. Technical report, Universidade Estadual de Campinas, Campinas, Sao Paulo, Brasil (2004)

    Google Scholar 

  14. Traina, C. Jr., Traina, A., Wu, L., Faloutsos, C.: Fast feature selection using fractal dimension. In: XV Brazilian Database Symposium, João Pessoa, PA, Brazil, pp. 158–171 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peres, S.M., de Andrade Netto, M.L. (2004). A Fractal Fuzzy Approach to Clustering Tendency Analysis. In: Bazzan, A.L.C., Labidi, S. (eds) Advances in Artificial Intelligence – SBIA 2004. SBIA 2004. Lecture Notes in Computer Science(), vol 3171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28645-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28645-5_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23237-7

  • Online ISBN: 978-3-540-28645-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics