Abstract
A hybrid system was implemented with the combination of Fractal Dimension Theory and Fuzzy Approximate Reasoning, in order to analyze datasets. In this paper, we describe its application in the initial phase of clustering methodology: the clustering tendency analysis. The Box-Counting Algorithm is carried out on a dataset, and with its resultant curve one obtains numeric indications related to the features of the dataset. Then, a fuzzy inference system acts upon these indications and produces information which enable the analysis mentioned above.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barnsley, M.: Fractals Everywhere. Academic Press Inc., San Diego (1988)
Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)
Can, F., Altingovde, Demir, E. I. S.: Efficiency and effectiveness of query processing in cluster-based retrieval. Information Systems 2003 (to appear)
Castro, L.N., Voz Zuben, F.J.: aiNet: an artificial immune network for data analysis. In: Data Mining: A Heuristic Approach, pp. 231–259. Idea Group Publishing, USA (2001)
Feeny, B.F.: Fast multifractal analysis by recursive box covering. International Journal of Bifurcation and Chaos 10(9), 2277–2287 (2000)
Jain, K.J., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Inc., New Jersey (1988)
Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall, Englewood Cliffs (1995)
Kruger, A.: Implementation of a fast box-counting algorithm. Computer Physics Communications 98, 224–234 (1996)
Massey, L.: Applications and Science in Soft Computing. In: Using ART1 Neural Networks to Determine Clustering Tendency, Springer, Heidelberg (2003)
Peitgen, H.O., Jurgens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Science. Springer, Heidelberg (1992)
Peres, S.M., Netto, M.L.A.: Using fractal dimension to fuzzy pre-processing of n-dimensional datasets. In: ICSE 2003 - Sixteenth International Conference on System Engineering, Conventry, United Kingdom (2003) (accepted to)
Peres, S.M., Netto, M.L.A.: Fractal fuzzy decision making: What is the adequate dimension for self-organizing maps. In: NAFIPS 2004 - North American Fuzzy Information Processing Society, Banff, Canada (2004) (to appear)
Peres, S.M., Netto, M.L.A.: Um sistema hibrido para analise heuristica de dados utilizando teoria de fractais e raciocinio aproximado. Technical report, Universidade Estadual de Campinas, Campinas, Sao Paulo, Brasil (2004)
Traina, C. Jr., Traina, A., Wu, L., Faloutsos, C.: Fast feature selection using fractal dimension. In: XV Brazilian Database Symposium, João Pessoa, PA, Brazil, pp. 158–171 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Peres, S.M., de Andrade Netto, M.L. (2004). A Fractal Fuzzy Approach to Clustering Tendency Analysis. In: Bazzan, A.L.C., Labidi, S. (eds) Advances in Artificial Intelligence – SBIA 2004. SBIA 2004. Lecture Notes in Computer Science(), vol 3171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28645-5_40
Download citation
DOI: https://doi.org/10.1007/978-3-540-28645-5_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23237-7
Online ISBN: 978-3-540-28645-5
eBook Packages: Springer Book Archive