Abstract
In this work we present a critical analysis of various aspects associated with the specification of termination conditions for simple genetic algorithms. The study, which is based on the use of Markov chains, identifies the main difficulties that arise when one wishes to set meaningful upper bounds for the number of iterations required to guarantee the convergence of such algorithms with a given confidence level. The latest trends in the design of stopping rules for evolutionary algorithms in general are also put forward and some proposals to overcome existing limitations in this respect are suggested.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brassard, G., Bratley, P.: Algorithmics: Theory and Practice. Prentice-Hall, Inc., New Jersey (1988)
Bäck, T., Hammel, U., Schwefel, H.P.: Evolutionary computation: Comments on the history and current state. IEEE Transactions on Evolutionary Computation 1, 3–17 (1997)
Eiben, Á.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3, 124–141 (1999)
Meyer, L., Feng, X.: A fuzzy stop criterion for genetic algorithms using performance estimation. In: Proceedings of the Third IEEE Conference on Fuzzy Systems, pp. 1990–1995 (1994)
Howell, M., Gordon, T., Brandao, F.: Genetic learning automata for function optimization. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 32, 804–815 (2002)
Carballido, J.A., Ponzoni, I., Brignole, N.B.: Evolutionary techniques for the travelling salesman problem. In: Rosales, M.B., Cortínez, V.H., Bambill, D.V. (eds.) Mecánica Computacional. Volume XXII. Asociación Argentina de Mecánica Computacional, pp. 1286–1294 (2003)
Aytug, H., Koehler, G.J.: Stopping criterion for finite length genetic algorithms. INFORMS Journal on Computing 8, 183–191 (1996)
Aytug, H., Koehler, G.J.: New stopping criterion for genetic algorithms. European Journal of Operational Research 126, 662–674 (2000)
Greenhalgh, D., Marshall, S.: Convergence criteria for genetic algorithms. SIAM Journal on Computing 20, 269–282 (2000)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, New York (1996)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Longman, Inc., Reading (1989)
Nix, A.E., Vose, M.D.: Modeling genetic algorithms with Markov chains. Annals of Mathematics and Artificial Intelligence 5, 79–88 (1992)
Davis, T.E., Príncipe, J.C.: A Markov chain framework for the simple genetic algorithm. Evolutionary Computation 1, 269–288 (1993)
Rudolph, G.: Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks 5, 96–101 (1994)
Poli, R.: Exact schema theorem and effective fitness for GP with one-point crossover. In: Whitley, L.D., Goldberg, D.E., Cantú-Paz, E., Spector, L., Parmee, I.C., Beyer, H.G. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 469–476. Morgan Kaufmann, San Francisco (2000)
Çínlar, E.: Introduction to Stochastic Processes. Prentice-Hall, Inc., Englewood Cliffs (1975)
De Jong, K.A., Spears, W.M., Gordon, D.F.: Using Markov chains to analyze GAFOs. In: Whitley, L.D., Vose, M.D. (eds.) Proceedings of the Third Workshop on Foundations of Genetic Algorithms, pp. 115–137. Morgan Kaufmann, San Francisco (1995)
Hart, W.E., Baden, S., Belew, R.K., Kohn, S.: Analysis of the numerical effects of parallelism on a parallel genetic algorithm. In: Proceedings of the 10th International Parallel Processing Symposium, pp. 606–612. IEEE Computer Society, Los Alamitos (1996)
Sena, G.A., Megherbi, D., Isern, G.: Implementation of a parallel genetic algorithm on a cluster of workstations: travelling salesman problem, a case study. Future Generation Computer Systems 17, 477–488 (2001)
Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Transactions on Evolutionary Computation 6, 443–462 (2002)
Veldhuizen, D.A.V., Zydallis, J.B., Lamont, G.B.: Considerations in engineering parallel multiobjetive evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7, 144–173 (2003)
De Jong, K.A.: Genetic algorithms are NOT function optimizers. In: Whitley, L.D. (ed.) Proceedings of the Second Workshop on Foundations of Genetic Algorithms, pp. 5–17. Morgan Kaufmann, San Francisco (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Safe, M., Carballido, J., Ponzoni, I., Brignole, N. (2004). On Stopping Criteria for Genetic Algorithms. In: Bazzan, A.L.C., Labidi, S. (eds) Advances in Artificial Intelligence – SBIA 2004. SBIA 2004. Lecture Notes in Computer Science(), vol 3171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28645-5_41
Download citation
DOI: https://doi.org/10.1007/978-3-540-28645-5_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23237-7
Online ISBN: 978-3-540-28645-5
eBook Packages: Springer Book Archive