Skip to main content

Heuristic Genetic Algorithm-Based Support Vector Classifier for Recognition of Remote Sensing Images

  • Conference paper
Advances in Neural Networks – ISNN 2004 (ISNN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3173))

Included in the following conference series:

  • 1360 Accesses

Abstract

A heuristic genetic algorithm (GA)-based support vector classifier (SVC) for recognition of remote sensing images is presented in this paper. The model parameters of SVC are automatic selected by a heuristic GA to obtain the better performance with high efficiency. Compared with the leave-one-out (loo) method and the trial and error method, this GA-based model parameters selection is simpler and easier to implement. Furthermore, the generalization of the obtained SVC is much improved. Comparative tests conducted on a 2-value remote sensing images demonstrate the better result of the proposed classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Li, J., Narayanan, R.M.: Integrated Spectral and Spatial Information Mining in Remote Sensing Imagery. IEEE Transactions on Geoscience and Remote Sensing 42, 673–685 (2004)

    Article  Google Scholar 

  2. Kouskoulas, Y., Ulaby, F.T., Pierce, L.E.: The Bayesian Hierarchical Classifier (BHC) and Its Application to Short Vegetation using Multifrequency Polarimetric SAR. IEEE Trans. Geoscience and Remote Sensing 42, 469–477 (2004)

    Article  Google Scholar 

  3. Shkvarko, Y.V.: Unifying Regularization and Bayesian Estimation Methods for Enhanced Imaging with Remotely Sensed Data. Part I: Theory, IEEE Trans. on Geoscience and Remote Sensing (2004)

    Google Scholar 

  4. Han, M., Cheng, L., Meng, H.: Application of Four-layer Neural Network on Information Extraction. Neural Networks 16, 547–553 (2003)

    Article  Google Scholar 

  5. Bruzzone, L., Prieto, D.F., Serpico, S.B.: A Neural-statistical Approach to Multitemporal and Multisource Remote-sensing Image Classification. IEEE Trans. Geoscience and Remote Sensing 37, 1350–1359 (1999)

    Article  Google Scholar 

  6. Shah, S., Sastry, P.S.: Fingerprint Classification using A Feedback-based Line Detector. IEEE Transactions on Systems, Man and Cybernetics, Part B 34, 85–94 (2004)

    Article  Google Scholar 

  7. Perez-Cruz, F., Navia-Vazquez, A., Figueiras-Vidal, A.R., Artes-Rodriguez, A.: Empirical Risk Minimization for Support Vector Classifiers. IEEE Transactions on Neural Networks 14, 296–303 (2003)

    Article  Google Scholar 

  8. Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)

    Article  Google Scholar 

  9. Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, Chichester (1998)

    MATH  Google Scholar 

  10. Lee, J.H., Lin, C.J.: Automatic Model Selection for Support Vector Machines. Technical Report, Dept. of Computer Science and Information Engineering, National Taiwan University, Taipei (November 2000)

    Google Scholar 

  11. Keerthi, S.S.: Efficient Tuning of SVM Hyperparameters using Radius/Margin Bound and Iterative Algorithms. Transactions on Neural Networks 13, 1225–1229 (2002)

    Article  Google Scholar 

  12. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing Multiple Parameters for Support Vector Machines. Machine Learning 46, 131–159 (2002)

    Article  MATH  Google Scholar 

  13. Holland, J.H.: Adaptation in Nature and Artificial Systems. MIT Press, Cambridge (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, C., Zheng, G., Jiao, L. (2004). Heuristic Genetic Algorithm-Based Support Vector Classifier for Recognition of Remote Sensing Images. In: Yin, FL., Wang, J., Guo, C. (eds) Advances in Neural Networks – ISNN 2004. ISNN 2004. Lecture Notes in Computer Science, vol 3173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28647-9_103

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28647-9_103

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22841-7

  • Online ISBN: 978-3-540-28647-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics