Skip to main content

Neural Networks in Detection and Identification of Littoral Oil Pollution by Remote Sensing

  • Conference paper
Advances in Neural Networks – ISNN 2004 (ISNN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3173))

Included in the following conference series:

  • 1380 Accesses

Abstract

In order to differentiate classes of oil-spills on water surface, a neural network (NN) approach is applied for spectral data analysis and identification of airborne laser fluorosensor in this paper. The target to be detected may be one of the following: seawater, lube, diesel, etc. The primary requirement for airborne sensors is to identify the substances targeted by the laser beam. Pearson Correlation Coefficient (PCC) method is one of the most current approaches. This paper outlines the NN model for the identification of the spilled oils, and makes a comparison with PCC in an effort to increase the level of confidence in the identification results. The results of ground tests using known targets show an increased confidence in the results when using the NN Model compared to that of PCC. It is believed that the NN model would play a significant role in the ocean oil-spill identification in the future.

Funded by the National Natural Science Foundation of China. (NSFC Project 40346028)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, N.L., Pan, X.G.: Application of Matlab/NNTool in Neural Network System. Computer Simulation 4, 125–128 (2004)

    Google Scholar 

  2. Lin, B., An, J.B.: Study on Detection Method of Spilled Oil at Sea by ANN of Laser Remote Sensing. Marine Environmental Science 1, 47–49 (2004)

    MATH  Google Scholar 

  3. Keiner, E.L.: Estimating Oceanic Chlorophyll Concentrations with Neural Networks. Remote Sensing 1, 189–194 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, B., An, J., Carl, B., Zhang, H. (2004). Neural Networks in Detection and Identification of Littoral Oil Pollution by Remote Sensing . In: Yin, FL., Wang, J., Guo, C. (eds) Advances in Neural Networks – ISNN 2004. ISNN 2004. Lecture Notes in Computer Science, vol 3173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28647-9_161

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28647-9_161

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22841-7

  • Online ISBN: 978-3-540-28647-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics