Abstract
This paper presents an approach for the estimation of visual motion over an image sequence in real-time. A new algorithm is proposed which solves the correspondence problem between two images in a very efficient way. The method uses the Census Transform as the representation of small image patches. These primitives are matched using a table based indexing scheme. We demonstrate the robustness of this technique on real-world image sequences of a road scenario captured from a vehicle based on-board camera. We focus on the computation of the optical flow. Our method runs in real-time on general purpose platforms and handles large displacements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–47 (1994)
Cedras, C., Shah, M.: Motion-based recognition: A survey. IVC 13(2), 129–155 (1995)
Arribas, P.C., Macia, F.M.H.: FPGA Implementation of Camus Correlation Optical Flow Algorithm for real-time Images
Cutler, R., Turk, M.: View-based interpretation of real-time optical flow for gesture recognition. In: Third IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan (April 1998)
Camus, T.A., Bülthoff, H.H.: Real-time optical flow extended in time. Tech. Rep. 13, Tübingen, Germany (February 1995)
Enkelmann, W., Gengenbach, V., Krüger, W., Rössle, S., Tölle, W.: Hindernisdetektion durch Real-Zeit-Auswertung von optischen Fluß-Vektoren. In: Levi, P., Bräunl, T. (eds.) Autonome Mobile Systeme, pp. 285–295. Springer, Heidelberg (1994)
Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Proceedings of the Third European Conference on Computer Vision, Stockholm (May 1994)
Bhat, D., Nayar, S.: Ordinal measures for visual correspondence, pp. 351–357 (1996)
Beis, J.S., Lowe, D.G.: Indexing without invariants in 3d object recognition. PAMI 21(10), 1000–1015 (1999)
Veenman, C.J., Reinders, M.J.T., Backer, E.: Establishing motion correspondence using extended temporal scope, vol. 145(1-2), pp. 227–243 (April 2003)
Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision. Prentice-Hall, Englewood Cliffs (1998)
Woodfill, J., Von Herzen, B.: Real-time stereo vision on the parts reconfigurable computer. In: Proceedings IEEE Symposium on Field-Programmable Custom Computing Machines, Napa (April 1997)
Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition, Seattle, pp. 592–600 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stein, F. (2004). Efficient Computation of Optical Flow Using the Census Transform. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-28649-3_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22945-2
Online ISBN: 978-3-540-28649-3
eBook Packages: Springer Book Archive