Skip to main content

Efficient Computation of Optical Flow Using the Census Transform

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

This paper presents an approach for the estimation of visual motion over an image sequence in real-time. A new algorithm is proposed which solves the correspondence problem between two images in a very efficient way. The method uses the Census Transform as the representation of small image patches. These primitives are matched using a table based indexing scheme. We demonstrate the robustness of this technique on real-world image sequences of a road scenario captured from a vehicle based on-board camera. We focus on the computation of the optical flow. Our method runs in real-time on general purpose platforms and handles large displacements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–47 (1994)

    Article  Google Scholar 

  2. Cedras, C., Shah, M.: Motion-based recognition: A survey. IVC 13(2), 129–155 (1995)

    Google Scholar 

  3. Arribas, P.C., Macia, F.M.H.: FPGA Implementation of Camus Correlation Optical Flow Algorithm for real-time Images

    Google Scholar 

  4. Cutler, R., Turk, M.: View-based interpretation of real-time optical flow for gesture recognition. In: Third IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan (April 1998)

    Google Scholar 

  5. Camus, T.A., Bülthoff, H.H.: Real-time optical flow extended in time. Tech. Rep. 13, Tübingen, Germany (February 1995)

    Google Scholar 

  6. Enkelmann, W., Gengenbach, V., Krüger, W., Rössle, S., Tölle, W.: Hindernisdetektion durch Real-Zeit-Auswertung von optischen Fluß-Vektoren. In: Levi, P., Bräunl, T. (eds.) Autonome Mobile Systeme, pp. 285–295. Springer, Heidelberg (1994)

    Google Scholar 

  7. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Proceedings of the Third European Conference on Computer Vision, Stockholm (May 1994)

    Google Scholar 

  8. Bhat, D., Nayar, S.: Ordinal measures for visual correspondence, pp. 351–357 (1996)

    Google Scholar 

  9. Beis, J.S., Lowe, D.G.: Indexing without invariants in 3d object recognition. PAMI 21(10), 1000–1015 (1999)

    Google Scholar 

  10. Veenman, C.J., Reinders, M.J.T., Backer, E.: Establishing motion correspondence using extended temporal scope, vol. 145(1-2), pp. 227–243 (April 2003)

    Google Scholar 

  11. Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision. Prentice-Hall, Englewood Cliffs (1998)

    Google Scholar 

  12. Woodfill, J., Von Herzen, B.: Real-time stereo vision on the parts reconfigurable computer. In: Proceedings IEEE Symposium on Field-Programmable Custom Computing Machines, Napa (April 1997)

    Google Scholar 

  13. Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition, Seattle, pp. 592–600 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stein, F. (2004). Efficient Computation of Optical Flow Using the Census Transform. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics