Skip to main content

Hybrid Model-Based Estimation of Multiple Non-dominant Motions

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

  • 2043 Accesses

Abstract

The estimation of motion in videos yields information useful in the scope of video annotation, retrieval and compression. Current approaches use iterative minimization techniques based on intensity gradients in order to estimate the parameters of a 2D transform between successive frames. These approaches rely on good initial guesses of the motion parameters. For single or dominant motion there exist hybrid algorithms that estimate such initial parameters prior to the iterative minimization. We propose a technique for the generation of a set of motion hypotheses using blockmatching that also works in the presence of multiple non-dominant motions. These hypotheses are then refined using iterative techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dammeyer, A., Jürgensen, W., Krüwel, C., Poliak, E., Ruttkowski, S., Schäfer, T., Sirava, M., Hermes, T.: Videoanalyse mit DIVA. In: Inhaltsbezogene Suche von Bildern und Videosequenzen in digitalen multimedialen Archiven, Beiträge zum Workshop auf der 22. Jahrestagung Künstliche Intelligenz (KI 1998), Bremen, pp. 13–23 (1998)

    Google Scholar 

  2. Irani, M., Anandan, P.: Video indexing based on mosaic representation. IEEE Transactions on PAMI 86, 905–921 (1998)

    Google Scholar 

  3. Ayer, S., Sawhney, H.S.: Layered representation of motion video using robust maximum-likelihood estimation of mixture models and MDL encoding. In: ICCV, p. 777 (1995)

    Google Scholar 

  4. Smolic, A., Sikora, T., Ohm, J.R.: Long-term global motion estimation and its application for sprite coding, content description, and segmentation. IEEE Transactions on Circuits and Systems for Video Technology 9, 1227–1242 (1999)

    Article  Google Scholar 

  5. Sawhney, H.S., Ayer, S., Gorkani, M.: Model-based 2D and 3D dominant motion estimation for mosaicing and video representation. In: Grimson, E. (ed.) International Conf. on Computer Vision, pp. 583–590. IEEE, Los Alamitos (1995)

    Google Scholar 

  6. Szeliski, R.: Image mosaicing for tele-reality applications. In: Proc. of the 2nd IEEE Workshop on Appplications of Computer Vision, pp. 44–53 (1994)

    Google Scholar 

  7. Szeliski, R.: Construction of panoramic image mosaics with global and local alignment. Internation Journal of Computer Vision 36, 101–130 (2000)

    Article  Google Scholar 

  8. Zelnik-Mano, L., Irani, M.: Multi-frame estimation of planar motion. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1105–1116 (2000)

    Article  Google Scholar 

  9. Wiskott, L.: Segmentation from motion: Combining Gabor- and Mallat-wavelets to overcome the aperture and correspondence problems. Pattern Recognition 32, 1751–1766 (1999)

    Article  Google Scholar 

  10. Smolic, A.: Globale Bewegungsbeschreibung und Video Mosaiking unter Verwendung Parametrischer 2-D Modelle, Schätzverfahren und Anwendungen. PhD thesis, Rheinisch-Westfälische Technische Hochschule Aachen, Fakultät für Elektrotechnik und Informationstechnik (2000)

    Google Scholar 

  11. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of the 4th Alvey Vision Conf., pp. 189–192 (1988)

    Google Scholar 

  12. Shi, J., Tomasi, C.: Good features to track. In: Proc. of the Conf. on Computer Vision and Pattern Recognition, pp. 593–600. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  13. Brown, L.G.: A survey of image registration techniques. ACM Computing Surveys 24 (1992)

    Google Scholar 

  14. Chen, Y.S., Hung, Y.P., Fuh, C.S.: A fast block matching algorithm based on the winner-update strategy. In: Proc. of the 4th ACCV, vol. 2, pp. 977–982 (2000)

    Google Scholar 

  15. Cheng, K.W., Chan, S.C.: Fast block matching algorithms for motion estimation. In: Proc. of the IEEE International Conf. on Acoustics, Speech and Signal Processing, pp. 2311–2314 (1996)

    Google Scholar 

  16. Cheung, C.K., Po, L.M.: Normalized partial distortion search algorithm for block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology 10, 417–422 (2000)

    Article  Google Scholar 

  17. Abmayr, W.: Einführung in die digitale Bildverarbeitung. B.G. Teubner Stuttgart (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jacobs, A., Hermes, T., Herzog, O. (2004). Hybrid Model-Based Estimation of Multiple Non-dominant Motions. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics