Skip to main content

A Model of Motion, Stereo, and Monocular Depth Perception

  • Conference paper
  • 2022 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Abstract

Visual cortical processing is segregated into pathways each consisting of several cortical areas. We identified key mechanisms of local competitive interaction, feedforward integration and modulatory feedback as common principles of integration and segregation of ambiguous information to implement a principle of evidence accumulation and feedback hypothesis testing and correction. In a previous work we demonstrated that a model of recurrent V1-MT interaction disambiguates motion estimates by filling-in. Here we show that identical mechanisms along the ventral V1-V2-V4 pathway are utilized for the interpretation of (1) stereoscopic disparity and (2) relative depth segregation of partially overlapping form. The results show that absolute and relative depth ambiguities are resolved by propagation of sparse depth cues. Lateral inhibition emerges at locations of unambiguous information and initiates the recurrent disambiguation process. Our simulations substantiate the proposed model with key mechanisms of integration and disambiguation in cortical form and motion processing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hupé, J.M., James, A.C., Girard, P., Lomber, S.G., Payne, B.R., Bullier, J.: Feedback connections act on the early part of the responses in monkey visual cortex. J. of Neurophys. 85, 134–145 (2001)

    Google Scholar 

  2. Friston, K.J., Büchel, C.: Attentional modulation of effective connectivity from V2 to V5/MT in humans. PNAS 97(13), 7591–7596 (2000)

    Article  Google Scholar 

  3. Neumann, H., Sepp, W.: Recurrent V1–V2 interaction in early visual boundary processing. Biological Cybernetics 81, 425–444 (1999)

    Article  Google Scholar 

  4. Neumann, H.: Completion phenomena in vision: A computational approach. In: Pessoa, L., DeWeerd, P. (eds.) Filling-In – From perceptual completion to cortical reorganization, pp. 151–173. Oxford Univ. Press, New York (2003)

    Google Scholar 

  5. Simoncelli, E.P., Heeger, D.J.: A model of neuronal responses in visual area MT. Vision Research 38, 743–761 (1998)

    Article  Google Scholar 

  6. Grossberg, S.: How does a brain build a cognitive code? Psych. Review 87, 1–51 (1980)

    Google Scholar 

  7. Bayerl, P., Neumann, H.: complementary computations for motion binding, segregation and the neural solution to the aperture problem. Perception Supplement 32, 19–20 (2003)

    Google Scholar 

  8. Spratling, M.W., Johnson, M.H.: A feedback model of visual attention. J. of Cognitive Neuroscience 16(2), 219–237 (2004)

    Article  Google Scholar 

  9. Bayerl, P., Neumann, H.: Disambiguating visual motion - a model of recurrent V1-MT interaction. In: Eighth International Conference on Cognitive and Neural Systems (ICCNS 2004), Boston, USA (2004) (in press)

    Google Scholar 

  10. Bayerl, P., Neumann, H.: Disambiguating visual motion by form-motion interaction - a computational model. In: Early Cognitive Vision Workshop (ECOVISION 2004), Isle of Skye, Scotland (2004), http://www.cn.stir.ac.uk/ecovision-ws/schedule.php

  11. Pack, C.C., Born, R.T.: Temporal dynamics of a neural solution to the aperture problem in cortical area MT. Nature 409, 1040–1042 (2001)

    Article  Google Scholar 

  12. Egnal, G., Wildes, R.P.: Detecting binocular half-occlusions: experimental comparisons of five approaches. Trans. on PAMI 24(8), 1127–1133 (2002)

    Google Scholar 

  13. Matthews, N., Meng, X., Xu, P., Qian, N.: A physiological theory of depth perception from vertical disparity. Vision Research 43, 85–99 (2003)

    Article  Google Scholar 

  14. Zhou, H., Friedman, H.S., von der Heydt, R.: Coding of border ownership in monkey visual cortex. J. of Neuroscience 20(17), 6594–6611 (2000)

    Google Scholar 

  15. Hansen, T., Neumann, H.: Neural mechanisms for the robust detection of junctions. Neural Computation 16(4) (2004) (in print)

    Google Scholar 

  16. Thielscher, A., Neumann, H.: Determining the depth of 2D surface patches using local relative depth cues in a model of local recurrent interactions. In: 7th Tübingen Perception Conference (TWK 2004), Tübingen, Germany, pp. 166 (2004)

    Google Scholar 

  17. Adelson, E., Bergen, J.: Spatiotemporal energy models for the perception of motion. Optical Society of America A 2(2), 284–299 (1985)

    Article  Google Scholar 

  18. Grossberg, S.: A neural theory of punishment and avoidance, II: Quantitative theory. Mathematical Biosciences 15, 253–285 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  19. Blake, R., Wilson, H.R.: Neural models of stereoscopic vision. TINS 14(10), 445–452 (1991)

    Google Scholar 

  20. Marr, D., Poggio, T.: Cooperative computation of stereo disparity. Science 194, 283–287 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bayerl, P., Neumann, H. (2004). A Model of Motion, Stereo, and Monocular Depth Perception. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics