Skip to main content

POI Detection Using Channel Clustering and the 2D Energy Tensor

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

In this paper we address one of the standard problems of image processing and computer vision: The detection of points of interest (POI). We propose two new approaches for improving the detection results. First, we define an energy tensor which can be considered as a phase invariant extension of the structure tensor. Second, we use the channel representation for robustly clustering the POI information from the first step resulting in sub-pixel accuracy for the localisation of POI. We compare our method to several related approaches on a theoretical level and show a brief experimental comparison to the Harris detector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Harris, C.G., Stephens, M.: A combined corner and edge detector. In: 4th Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  2. Potamianos, A., Maragos, P.: A comparison of the energy operator and the Hilbert transform approach to signal and speech demodulation. Signal Processing 37, 95–120 (1994)

    Article  MATH  Google Scholar 

  3. Kaiser, J.F.: On a simple algorithm to calculate the ’energy’ of a signal. In: Proc. IEEE Int’l. Conf. Acoust., Speech, Signal Processing, pp. 381–384 (1990)

    Google Scholar 

  4. Köthe, U.: Edge and junction detection with an improved structure tensor. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 25–32. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Maragos, P., Bovik, A.C., Quartieri, J.F.: A multi-dimensional energy operator for image processing. In: SPIE Conf. Visual Comm. and Image Proc., pp. 177–186 (1992)

    Google Scholar 

  6. Danielsson, P.E., Lin, Q.: Efficient detection of second-degree variations in 2D and 3D images. J. Visual Comm. and Image Representation 12, 255–305 (2001)

    Article  Google Scholar 

  7. Köthe, U.: Integrated edge and junction detection with the boundary tensor. In: Proc. of 9th Intl. Conf. on Computer Vision, Nice., vol. 1, pp. 424–431 (2003)

    Google Scholar 

  8. Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: ISPRS Intercommission Workshop, Interlaken, pp. 149–155 (1987)

    Google Scholar 

  9. Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: Proc. IEEE First International Conference on Computer Vision, pp. 433–438 (1987)

    Google Scholar 

  10. Nordberg, K.: Signal Representation and Processing using Operator Groups. PhD thesis, Linköping University, Sweden, Dissertation No 366 (1995)

    Google Scholar 

  11. Bigün, J., Granlund, G.H., Wiklund, J.: Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 775–790 (1991)

    Article  Google Scholar 

  12. Larkin, K.G., Oldfield, M.A., Bone, D.J.: Demodulation and phase estimation of two-dimensional patterns. Australian patent AU 200110005 A1 (2001)

    Google Scholar 

  13. Jähne, B.: Digitale Bildverarbeitung. Springer, Berlin (1997)

    Google Scholar 

  14. Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  15. Koenderink, J.J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Transactions on Signal Processing 49, 3136–3144 (2001)

    Article  MathSciNet  Google Scholar 

  17. Felsberg, M., Sommer, G.: Image features based on a new approach to 2D rotation invariant quadrature filters. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 369–383. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Hahn, S.L.: Hilbert Transforms in Signal Processing. Artech House, Norwood (1996)

    MATH  Google Scholar 

  19. Felsberg, M., Forssén, P.E., Scharr, H.: B-spline channel smoothing for robust estimation. Tech. Rep. LiTH-ISY-R-2579, Dept. EE, Linköping University (2004)

    Google Scholar 

  20. Felsberg, M., Granlund, G.: Anisotropic channel filtering. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 755–762. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Granlund, G.H., Moe, A.: Unrestricted recognition of 3-d objects for robotics using multi-level triplet invariants. Artificial Intelligence Magazine (2004) (to appear)

    Google Scholar 

  22. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision 37, 151–172 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Felsberg, M., Granlund, G. (2004). POI Detection Using Channel Clustering and the 2D Energy Tensor. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics