Skip to main content

3D Segmentation and Quantification of Human Vessels Based on a New 3D Parametric Intensity Model

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

  • 2059 Accesses

Abstract

We introduce an approach for 3D segmentation and quantification of vessels. The approach is based on a new 3D cylindrical parametric intensity model, which is directly fit to the image intensities through an incremental process based on a Kalman filter. The model has been successfully applied to segment vessels from 3D MRA images. Our experiments show that the model yields superior results in estimating the vessel radius compared to approaches based on a Gaussian model. Also, we point out general limitations in estimating the radius of thin vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Pocketbook of Mathematical Functions, Verlag Harri Deutsch (1984)

    Google Scholar 

  2. Bullitt, E., Aylward, S., Smith, K., Mukherji, S., Jiroutek, M., Muller, K.: Symbolic Description of Intracerebral Vessels Segmented from MRA and Evaluation by Comparison with X-Ray Angiograms. Medical Image Analysis 5, 157–169 (2001)

    Article  Google Scholar 

  3. Frangi, F., Niessen, W.J., Hoogeveen, R.M., et al.: Model-Based Quantitation of 3D Magnetic Resonance Angiographic Images. T-MI 18(10), 946–956 (1999)

    Google Scholar 

  4. Gering, D.T., Nabavi, A., Kikinis, R., et al.: An integrated Visualization System for Surgical Planning and Guidance using Image Fusion and Interventional Imaging. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 808–819. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Gong, R.H., Wörz, S., Rohr, K.: Segmentation of Coronary Arteries of the Human Heart from 3D Medical Images. In: Proc. BVM 2003, pp. 66–70 (2003)

    Google Scholar 

  6. Koller, T.M., Gerig, G., Székely, G., Dettwiler, D.: Multiscale Detection of Curvilinear Structures in 2D and 3D Image Data. In: Proc. ICCV 1995, pp. 864–869 (1995)

    Google Scholar 

  7. Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model Based Detection of Tubular Structures in 3D Images. CVIU 80(2), 130–171 (2000)

    MATH  Google Scholar 

  8. Noordmans, H.J., Smeulders, A.W.M.: High accuracy tracking of 2D/3D curved line structures by consecutive cross-section matching. Pattern Recogn. Letters 19(1), 97–111 (1998)

    Article  MATH  Google Scholar 

  9. Reinhardt, J.M., D’Souza, N.D., Hoffman, E.A.: Accurate Measurement of Intrathoracic Airways. IEEE Trans. on Medical Imaging 16(6), 820–827 (1997)

    Article  Google Scholar 

  10. Rueckert, D., Burger, P., Forbat, S.M., Mohiaddin, R.D., Yang, G.Z.: Automatic Tracking of the Aorta in Cardiovascular MR Images Using Deformable Models. IEEE Trans. on Medical Imaging 16(5), 581–590 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wörz, S., Rohr, K. (2004). 3D Segmentation and Quantification of Human Vessels Based on a New 3D Parametric Intensity Model. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics