Skip to main content

Fast Random Sample Matching of 3d Fragments

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

This paper proposes an efficient pairwise surface matching approach for the automatic assembly of 3d fragments or industrial components. The method rapidly scans through the space of all possible solutions by a special kind of random sample consensus (RANSAC) scheme. By using surface normals and optionally simple features like surface curvatures, we can highly constrain the initial 6 degrees of freedom search space of all relative transformations between two fragments. The suggested approach is robust, very time and memory efficient, easy to implement and applicable to all kinds of surface data where surface normals are available (e.g. range images, polygonal object representations, point clouds with neighbor connectivity, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Trans. PAMI 14(2), 239–256 (1992)

    Google Scholar 

  2. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions, J. Opt. Soc. Amer. A 4(4), 629–642 (1987)

    Article  MathSciNet  Google Scholar 

  3. Chua, C.S., Jarvis, R.: Point Signatures: A New Representation for 3D Object Recognition. Int’l Journal of Computer Vision 25(1), 63–85 (1997)

    Article  Google Scholar 

  4. Papaioannou, G., Theoharis, T.: Fast Fragment Assemblage Using Boundary Line and Surface Matching. In: IEEE Proc. ICPR/ACVA (2003)

    Google Scholar 

  5. Johnson, A.E., Hebert, M.: Surface registration by matching oriented points. In: Proc. lnt’l. Conf. Recent Advances in 3-D Digital Imaging and Modeling (3DIM) (1997)

    Google Scholar 

  6. Stockman, G.: Object Recognition and Localization via Pose Clustering. Computer Vision, Graphics, and Image Processing 40, 361–387 (1987)

    Article  Google Scholar 

  7. Linnainmaa, S., Harwood, D., Davis, L.S.: Pose determination of a threedimensional object using triangle pairs. IEEE Trans. PAMI 10(5), 634–647 (1988)

    Google Scholar 

  8. Barequet, G., Sharir, M.: Partial Surface Matching by Using Directed Footprints. In: Computational Geometry 1996, Philadelphia PA, USA (1996)

    Google Scholar 

  9. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with application to image analysis and automated cartography. Communication of the ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  10. Chen, C.S., Hung, Y.P., Cheng, J.B.: RANSAC-Based DARCES: A New Approach to Fast Automatic Registration of Partially Overlapping Range Images. IEEE Trans. PAMI 21(11), 1229–1234 (1999)

    Google Scholar 

  11. Leitão, H.C.G., Stolfi, J.: A Multiscale Method for the Reassembly of Two- Dimensional Fragmented Objects. IEEE Trans. PAMI 24(9), 1239–1251 (2002)

    Google Scholar 

  12. Papaioannou, G., Karabassi, E.A., Theoharis, T.: Reconstruction of Threedimensional Objects through Matching of their Parts. IEEE Trans. PAMI 24(1), 114–124 (2002)

    Google Scholar 

  13. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow. In: Proc. SIGGRAPH 1999, pp. 317–324 (1999)

    Google Scholar 

  14. Johnson, A.E., Hebert, M.: Control of Polygonal Mesh Resolution for 3-D Computer Vision. Tech. Report CMU-RI-TR-96-20, Robotics Institute, Carnegie Mellon University (April 1997)

    Google Scholar 

  15. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An Algorithm for Finding Best Matches in Logarithmic Expected Time. ACM Trans. Mathematical Software 3(3), 209–226 (1977)

    Article  MATH  Google Scholar 

  16. Winkelbach, S., Westphal, R., Goesling, T.: Pose Estimation of Cylindrical Fragments for Semi-Automatic Bone Fracture Reduction. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 566–573. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Winkelbach, S., Rilk, M., Schönfelder, C., Wahl, F.M. (2004). Fast Random Sample Matching of 3d Fragments. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics