Skip to main content

Invariants for Discrete Structures – An Extension of Haar Integrals over Transformation Groups to Dirac Delta Functions

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

Due to the increasing interest in 3D models in various applications there is a growing need to support e.g. the automatic search or the classification in such databases. As the description of 3D objects is not canonical it is attractive to use invariants for their representation. We recently published a methodology to calculate invariants for continuous 3D objects defined in the real domain \({\mathbb R}^3\) by integrating over the group of Euclidean motion with monomials of a local neighborhood of voxels as kernel functions and we applied it successfully for the classification of scanned pollen in 3D. In this paper we are going to extend this idea to derive invariants from discrete structures, like polygons or 3D-meshes by summing over monomials of discrete features of local support. This novel result for a space-invariant description of discrete structures can be derived by extending Haar integrals over the Euclidean transformation group to Dirac delta functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arbter, K., Snyder, W., Burkhardt, H., Hirzinger, G.: Application of Affine- Invariant Fourier Descriptors to 3-D Objects. IEEE Trans. on Pattern Analysis and Machine Intelligence PAMI-12(7), 640–647 (1990)

    Article  Google Scholar 

  2. Burkhardt, H., Siggelkow, S.: Invariant features in pattern recognition – fundamentals and applications. In: Kotropoulos, C., Pitas, I. (eds.) Nonlinear Model-Based Image/Video Processing and Analysis, pp. 269–307. John Wiley & Sons, Chichester (2001)

    Google Scholar 

  3. Ronneberger, O., Burkhardt, H., Schultz, E.: General-purpose Object Recognition in 3D Volume Data Sets using Gray-Scale Invariants – Classification of Airborne Pollen-Grains Recorded with a Confocal Laser Scanning Microscope. In: Proceedings of the International Conference on Pattern Recognition, Quebec, Canada (September 2002)

    Google Scholar 

  4. Schulz-Mirbach, H.: On the Existence of Complete Invariant Feature Spaces in Pattern Recognition. In: Proc. of the 11th International Conference on Pattern Recognition, Conference B: Pattern Recognition Methodology and Systems, Den Haag, vol. II, pp. 178–182 (1992)

    Google Scholar 

  5. Schulz-Mirbach, H.: Anwendung von Invarianzprinzipien zur Merkmalgewinnung in der Mustererkennung. PhD thesis, Technische Universität Hamburg-Harburg, Reihe 10, Nr. 372, VDI-Verlag (February 1995)

    Google Scholar 

  6. Schulz-Mirbach, H.: Invariant features for gray scale images. In: Sagerer, G., Posch, S., Kummert, F. (eds.) 17. DAGM - Symposium “Mustererkennung”, Bielefeld, pp. 1–14. Reihe Informatik aktuell, Springer. DAGM-Preis (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burkhardt, H., Reisert, M., Li, H. (2004). Invariants for Discrete Structures – An Extension of Haar Integrals over Transformation Groups to Dirac Delta Functions. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics