Skip to main content

Scale-Invariant Object Categorization Using a Scale-Adaptive Mean-Shift Search

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

The goal of our work is object categorization in real-world scenes. That is, given a novel image we want to recognize and localize unseen-before objects based on their similarity to a learned object category. For use in a real-world system, it is important that this includes the ability to recognize objects at multiple scales.

In this paper, we present an approach to multi-scale object categorization using scale-invariant interest points and a scale-adaptive Mean-Shift search. The approach builds on the method from [12], which has been demonstrated to achieve excellent results for the single-scale case, and extends it to multiple scales. We present an experimental comparison of the influence of different interest point operators and quantitatively show the method’s robustness to large scale changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, S., Roth, D.: Learning a sparse representation for object detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 113–127. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recognition 13(2), 111–122 (1981)

    Article  MATH  Google Scholar 

  3. Borenstein, E., Ullman, S.: Class-specific, top-down segmentation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 109–122. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Collins, R.: Mean-shift blob tracking through scale space. In: CVPR 2003 (2003)

    Google Scholar 

  5. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. Trans. PAMI 24(5), 603–619 (2002)

    Google Scholar 

  6. Comaniciu, D., Ramesh, V., Meer, P.: The variable bandwidth mean shift and data-driven scale selection. In: ICCV 2001 (2001)

    Google Scholar 

  7. Dorko, G., Schmid, C.: Selection of scale invariant parts for object class recognition. In: ICCV 2003 (2003)

    Google Scholar 

  8. Fergus, R., Zisserman, A., Perona, P.: Object class recognition by unsupervised scaleinvariant learning. In: CVPR 2003 (2003)

    Google Scholar 

  9. Garg, A., Agarwal, S., Huang, T.: Fusion of global and local information for object detection. In: ICPR 2002 (2002)

    Google Scholar 

  10. Kadir, T., Brady, M.: Scale, saliency, and image description. IJCV 45(2), 83–105 (2001)

    Article  MATH  Google Scholar 

  11. Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: ECCV 2004 Workshop on Stat. Learn. in Comp. Vis. (2004)

    Google Scholar 

  12. Leibe, B., Schiele, B.: Interleaved object categorization and segmentation. In: BMVC 2003 (2003)

    Google Scholar 

  13. Lindeberg, T.: Feature detection with automatic scale selection. IJCV 30(2), 79–116 (1998)

    Article  Google Scholar 

  14. Lowe, D.: Object recognition from local scale invariant features. In: ICCV 1999 (1999)

    Google Scholar 

  15. Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: ICCV 2001, pp. 525–531 (2001)

    Google Scholar 

  16. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: CVPR 2003 (2003)

    Google Scholar 

  17. Papageorgiou, C., Poggio, T.: A trainable system for object detection. IJCV 38(1) (2000)

    Google Scholar 

  18. Schneiderman, H., Kanade, T.: A statistical method of 3d object detection applied to faces and cars. In: CVPR 2000 (2000)

    Google Scholar 

  19. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR 2001, pp. 511–518 (2001)

    Google Scholar 

  20. Weber, M., Welling, M., Perona, P.: Unsupervised learning of object models for recognition. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 18–32. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leibe, B., Schiele, B. (2004). Scale-Invariant Object Categorization Using a Scale-Adaptive Mean-Shift Search. In: Rasmussen, C.E., BĂ¼lthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics