Skip to main content

Adaptive Feature Selection in Image Segmentation

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

Most image segmentation algorithms optimize some mathematical similarity criterion derived from several low-level image features. One possible way of combining different types of features, e.g. color- and texture features on different scales and/or different orientations, is to simply stack all the individual measurements into one high-dimensional feature vector. Due to the nature of such stacked vectors, however, only very few components (e.g. those which are defined on a suitable scale) will carry information that is relevant for the actual segmentation task. We present an approach to combining segmentation and adaptive feature selection that overcomes this relevance determination problem. All free model parameters of this method are selected by a resampling-based stability analysis. Experiments demonstrate that the built-in feature selection mechanism leads to stable and meaningful partitions of the images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belongie, S., Carson, C., Greenspan, H., Malik, J.: Color- and texture-based image segmentation using the expectation-maximization algorithm and its application to content-based image retrieval. In: Int. Conf. Computer Vision (1998)

    Google Scholar 

  2. Ben-Dor, N.: Friedman, and Z. Yakhini. Class discovery in gene expression data. In: Procs. RECOMB, pp. 31–38 (2001)

    Google Scholar 

  3. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  4. Figueiredo, M., Jain, A.K.: Bayesian learning of sparse classifiers. In: CVPR 2001 (2001)

    Google Scholar 

  5. Hastie, T., Tibshirani, R.: Discriminant analysis by gaussian mixtures. J. R. Stat. Soc. B 58, 158–176 (1996)

    MathSciNet  Google Scholar 

  6. Hastie, T., Tibshirani, R., Buja, A.: Flexible discriminant analysis by optimal scoring. J. Am. Stat. Assoc. 89, 1255–1270 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logist. Quart. 2, 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  8. Lange, T., Braun, M., Roth, V., Buhmann, J.M.: Stability-based model selection. In: Advances in Neural Information Processing Systems, vol. 15 (2003)

    Google Scholar 

  9. Law, M.H., Jain, A.K., Figueiredo, M.A.T.: Feature selection in mixture-based clustering. In: Advances in Neural Information Processing Systems, vol. 15 (2003)

    Google Scholar 

  10. Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996)

    Article  Google Scholar 

  11. Osborne, M., Presnell, B., Turlach, B.: On the lasso and its dual. J. Comput. Graph. Stat. 9, 319–337 (2000)

    Article  MathSciNet  Google Scholar 

  12. Roth, V., Lange, T.: Feature selection in clustering problems. In: Advances in Neural Information Processing Systems, vol. 16, MIT Press, Cambridge (2004)

    Google Scholar 

  13. Roth, V., Lange, T.: Bayesian class discovery in microarray datasets. IEEE Trans. on Biomedical Engineering 51(5) (2004)

    Google Scholar 

  14. Tibshirani, R.J.: Regression shrinkage and selection via the lasso. JRSS B 58, 267–288 (1996)

    MATH  MathSciNet  Google Scholar 

  15. Heydebreck, A.v., Huber, W., Poustka, A., Vingron, M.: Identifying splits with clear separation: a new class discovery method for gene expression data. Bioinformatics 17 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roth, V., Lange, T. (2004). Adaptive Feature Selection in Image Segmentation. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics