Skip to main content

MinOver Revisited for Incremental Support-Vector-Classification

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

The well-known and very simple MinOver algorithm is reformulated for incremental support vector classification with and without kernels. A modified proof for its \(\mathcal{O}(t^{1/2})\) convergence is presented, with t as the number of training steps. Based on this modified proof it is shown that even a convergence of at least \(\mathcal{O}(t^{1})\) is given. This new convergence bound for MinOver is confirmed by computer experiments on artificial data sets. The computational effort per training step scales as \(\mathcal{O}(N)\) with the number N of training patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cortes, C., Vapnik, V.: Support-vector-networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  2. Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algorithm. In: Computational Learing Theory, pp. 209–217 (1998)

    Google Scholar 

  3. Friess, T.T., Cristianini, N., Campbell, C.: The kernel adatron algorithm: a fast and simple learning procedure for support vector machine. In: Proc. 15th International Conference on Machine Learning (1998)

    Google Scholar 

  4. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: A fast iterative nearest point algorithm for support vector machine classifier design. IEEE-NN 11(1), 124–136 (2000)

    Google Scholar 

  5. Krauth, W., Mezard, M.: Learning algorithms with optimal stability in neural networks. J.Phys.A 20, 745–752 (1987)

    Article  MathSciNet  Google Scholar 

  6. LeCun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes, C., Denker, J., Drucker, H., Guyon, I., Muller, U., Sackinger, E., Simard, P., Vapnik, V.: Comparison of learning algorithms for handwritten digit recognition. In: Int.Conf.on Artificial Neural Networks, pp. 53–60 (1995)

    Google Scholar 

  7. Li, Y., Long, P.M.: The relaxed online maximum margin algorithm. Machine Learning 46(1-3), 361–387 (2002)

    Article  MATH  Google Scholar 

  8. Navone, H.D., Downs, T.: Variations on a kernel-adatron theme. VII Internacional Congress on Information Engineering, Buenos Aires (2001)

    Google Scholar 

  9. Osuna, E., Freund, R., Girosi, F.: Training support vector machines:an application to face detection. In: CVPR 1997, pp. 130–136 (1997)

    Google Scholar 

  10. Platt, J.C.: Advances in Kernel Methods - Support Vector Learning. In: chapter Fast Training of Support Vector Machines using Sequential Minimal Optimization, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  11. Schölkopf, B.: Support vector learning (1997)

    Google Scholar 

  12. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martinetz, T. (2004). MinOver Revisited for Incremental Support-Vector-Classification. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics