Skip to main content

Learning with Distance Substitution Kernels

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

  • 2265 Accesses

Abstract

During recent years much effort has been spent in incorporating problem specific a-priori knowledge into kernel methods for machine learning. A common example is a-priori knowledge given by a distance measure between objects. A simple but effective approach for kernel construction consists of substituting the Euclidean distance in ordinary kernel functions by the problem specific distance measure. We formalize this distance substitution procedure and investigate theoretical and empirical effects. In particular we state criteria for definiteness of the resulting kernels. We demonstrate the wide applicability by solving several classification tasks with SVMs. Regularization of the kernel matrices can additionally increase the recognition accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bahlmann, C., Haasdonk, B., Burkhardt, H.: On-line Handwriting Recognition with Support Vector Machines—A Kernel Approach. In: Proc. of the 8th IWFHR, pp. 49–54 (2002)

    Google Scholar 

  2. Belongie, S., Fowlkes, C., Chung, F., Malik, J.: Spectral partitioning with indefinite kernels using the Nyström extension. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 21–31. Springer, Heidelberg (2002)

    Google Scholar 

  3. Canu, S.: Learning with non-positive kernels. Submitted to ICML (2004)

    Google Scholar 

  4. Chapelle, O., Haffner, P., Vapnik, V.: Support vector machines for histogram-based image classification. IEEE-NN 10(5), 1055–1064 (1999)

    Google Scholar 

  5. Graepel, T., Herbrich, R., Bollmann-Sdorra, P., Obermayer, K.: Classification on pairwise proximity data. In: NIPS 12, pp. 438–444. MIT Press, Cambridge (1999)

    Google Scholar 

  6. Graepel, T., Herbrich, R., Schölkopf, B., Smola, A., Bartlett, P., Müller, K.-R., Obermayer, K., Williamson, B.: Classification on proximity data with LP–machines. In: Proc. of the 9th ICANN, pp. 304–309 (1999)

    Google Scholar 

  7. Haasdonk, B.: Feature space interpretation ofSVMswith non positive definite kernels. Internal report 1/03, IIF-LMB, University Freiburg, Submitted to IEEE TPAMI (October 2003)

    Google Scholar 

  8. Haasdonk, B., Keysers, D.: Tangent distance kernels for support vector machines. In: Proc. of the 16th ICPR, vol. 2, pp. 864–868 (2002)

    Google Scholar 

  9. Lin, H.-T., Lin, C.-J.: A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Technical report, National Taiwan University (March 2003)

    Google Scholar 

  10. Mary, X.: Hilbertian subspaces, subdualities and applications. PhD thesis, INSA Rouen (2003)

    Google Scholar 

  11. Moreno, P.J., Ho, P., Vasconcelos, N.: A Kullback-Leibler divergence based kernel for SVM classification in multimedia applications. In: NIPS 17 (2003)

    Google Scholar 

  12. Pekalska, E., Paclik, P., Duin, R.: A generalized kernel approach to dissimilarity based classification. J. of Mach. Learn. Research 2, 175–211 (2001)

    Article  MathSciNet  Google Scholar 

  13. Roth, V., Laub, J., Kawanabe, M., Buhmann, J.M.: Optimal cluster preserving embedding of nonmetric proximity data. IEEE TPAMI 25(12), 1540–1551 (2003)

    Google Scholar 

  14. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  15. Simard, P.Y., LeCun, Y.A., Denker, J.S.: Efficient pattern recognition using a new transformation distance. In: NIPS 5, pp. 50–58. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  16. Typke, R., Giannopoulos, P., Veltkamp, R.C., Wiering, F., van Oostrum, R.: Using transportation distances for measuring melodic similarity. In: ISMIR, pp. 107–114 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haasdonk, B., Bahlmann, C. (2004). Learning with Distance Substitution Kernels. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics