Skip to main content

Semi-supervised Kernel Regression Using Whitened Function Classes

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

The use of non-orthonormal basis functions in ridge regression leads to an often undesired non-isotropic prior in function space. In this study, we investigate an alternative regularization technique that results in an implicit whitening of the basis functions by penalizing directions in function space with a large prior variance. The regularization term is computed from unlabelled input data that characterizes the input distribution. Tests on two datasets using polynomial basis functions showed an improved average performance compared to standard ridge regression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cristianini, N., Shawe-Taylor, J.: Support vector machines. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Harrison, D., Rubinfeld, D.: Hedonic prices and the demand for clean air. J. Environ. Economics & Management 5, 81–102 (1978), Data available from http://lib.stat.cmu.edu/datasets/boston

    Article  MATH  Google Scholar 

  3. Schölkopf, B., Smola, A.J.: Learning with kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  4. Vapnik, V.: Estimation of dependences based On empirical data. Springer, New York (1982)

    MATH  Google Scholar 

  5. Williams, C.K.I., Rasmussen, C.E.: Gaussian processes for regression. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Processing Systems, vol. 8, pp. 598–604. MIT Press, Cambridge (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Franz, M.O., Kwon, Y., Rasmussen, C.E., Schölkopf, B. (2004). Semi-supervised Kernel Regression Using Whitened Function Classes. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics