Abstract
The use of non-orthonormal basis functions in ridge regression leads to an often undesired non-isotropic prior in function space. In this study, we investigate an alternative regularization technique that results in an implicit whitening of the basis functions by penalizing directions in function space with a large prior variance. The regularization term is computed from unlabelled input data that characterizes the input distribution. Tests on two datasets using polynomial basis functions showed an improved average performance compared to standard ridge regression.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cristianini, N., Shawe-Taylor, J.: Support vector machines. Cambridge University Press, Cambridge (2000)
Harrison, D., Rubinfeld, D.: Hedonic prices and the demand for clean air. J. Environ. Economics & Management 5, 81–102 (1978), Data available from http://lib.stat.cmu.edu/datasets/boston
Schölkopf, B., Smola, A.J.: Learning with kernels. MIT Press, Cambridge (2002)
Vapnik, V.: Estimation of dependences based On empirical data. Springer, New York (1982)
Williams, C.K.I., Rasmussen, C.E.: Gaussian processes for regression. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Processing Systems, vol. 8, pp. 598–604. MIT Press, Cambridge (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Franz, M.O., Kwon, Y., Rasmussen, C.E., Schölkopf, B. (2004). Semi-supervised Kernel Regression Using Whitened Function Classes. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-28649-3_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22945-2
Online ISBN: 978-3-540-28649-3
eBook Packages: Springer Book Archive