Skip to main content

Learning Depth from Stereo

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

We compare two approaches to the problem of estimating the depth of a point in space from observing its image position in two different cameras: 1. The classical photogrammetric approach explicitly models the two cameras and estimates their intrinsic and extrinsic parameters using a tedious calibration procedure; 2. A generic machine learning approach where the mapping from image to spatial coordinates is directly approximated by a Gaussian Process regression. Our results show that the generic learning approach, in addition to simplifying the procedure of calibration, can lead to higher depth accuracies than classical calibration although no specific domain knowledge is used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Luhmann, T.: Nahbereichsphotogrammetrie - Grundlagen, Methoden und Anwendungen. Wichmann (2000) [in German]

    Google Scholar 

  2. Cristianini, N., Shawe-Taylor, J.: Support Vector Machines - and other kernel-based methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  3. Kay, S.M.: Statistical Signal Processing, vol. I. Prentice-Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  4. Sundararajan, S., Keerthi, S.S.: Predictive Approaches for Choosing Hyperparameters in Gaussian Processes. Neural Computation 13, 1103–1118 (2001)

    Article  MATH  Google Scholar 

  5. Williams, C.K.I., Rasmussen, C.E.: Gaussian processes for regression. Advances in Neural Information Processing Systems 8, 514–520 (1996)

    Google Scholar 

  6. Sinz, F.: Kamerakalibrierung und Tiefenschätzung - Ein Vergleich von klassischer Bündelblockausgleichung und statistischen Lernalgorithmen (2004), http://www.kyb.tuebingen.mpg.de/~fabee [in German]

  7. Abraham, S., Förstner, W.: Zur automatischen Modellwahl bei der Kalibrierung von CCD-Kameras. In: 19. DAGM-Symposium Mustererkennung 1997, pp. 147–155. Springer, Heidelberg (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sinz, F.H., Candela, J.Q., Bakır, G.H., Rasmussen, C.E., Franz, M.O. (2004). Learning Depth from Stereo. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics