Skip to main content

Multivariate Regression via Stiefel Manifold Constraints

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

We introduce a learning technique for regression between high-dimensional spaces. Standard methods typically reduce this task to many one-dimensional problems, with each output dimension considered independently. By contrast, in our approach the feature construction and the regression estimation are performed jointly, directly minimizing a loss function that we specify, subject to a rank constraint. A major advantage of this approach is that the loss is no longer chosen according to the algorithmic requirements, but can be tailored to the characteristics of the task at hand; the features will then be optimal with respect to this objective, and dependence between the outputs can be exploited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bojanczyk, A.W., Lutoborski, A.: The Procrustes problem for orthogonal Stiefel matrices. SIAM Journal on Scientific Computing 21(4), 1291–1304 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Crampin, M., Pirani, F.A.E.: Applicable Differential Geometry. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  3. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM Journal on Matrix Analysis and Applications 20(2), 303–353 (1999)

    Article  MathSciNet  Google Scholar 

  4. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. John Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  5. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2001)

    MATH  Google Scholar 

  6. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: ICML 2003, pp. 321–328 (2003)

    Google Scholar 

  7. Saitoh, S.: Theory of Reproducing Kernels and its Applications. Longman Scientific & Technical, Harlow, England (1988)

    Google Scholar 

  8. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  9. Smola, A.J., Kondor, R.: Kernels and regularization on graphs. In: Proceedings of the Annual Conference on Computational Learning Theory and Kernel Workshop, Springer, Heidelberg (2003)

    Google Scholar 

  10. Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., Vapnik, V.: Kernel dependency estimation. In: Advances in Neural Information Processing Systems, vol. 15, MIT Press, Cambridge (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bakır, G.H., Gretton, A., Franz, M., Schölkopf, B. (2004). Multivariate Regression via Stiefel Manifold Constraints. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics