Skip to main content

Cooperative Optimization for Energy Minimization in Computer Vision: A Case Study of Stereo Matching

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

This paper presents a cooperative optimization algorithm for energy minimization in a general form. Its operations are based on parallel, local iterative interactions. This algorithm has many important computational properties absent in existing optimization methods. Given an optimization problem instance, the computation always has a unique equilibrium and converges to it with an exponential rate regardless of initial conditions. There are sufficient conditions for identifying global optima and necessary conditions for trimming search spaces. To demonstrate its power, a case study of stereo matching from computer vision is provided. The proposed algorithm does not have the restrictions on energy functions imposed by graph cuts [1,2], a powerful specialized optimization technique, yet its performance was comparable with graph cuts in solving stereo matching using the common evaluation framework [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cut. IEEE TPAMI 23, 1222–1239 (2001)

    Google Scholar 

  2. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE TPAMI 26, 147–159 (2004)

    Google Scholar 

  3. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV 47, 7–42 (2002)

    Article  MATH  Google Scholar 

  4. Zitnick, C.L., Kanade, T.: A cooperative algorithm for stereo matching and occlusion detection. IEEE TPAMI 2 (2000)

    Google Scholar 

  5. Marr, D., Poggio, T.: Cooperative computation of stereo disparity. Science 194, 209–236 (1976)

    Article  Google Scholar 

  6. Atkinson, K.: Computers and Intractability. Kluwer Academic Publishers, San Francisco (1989)

    Google Scholar 

  7. Michalewicz, Z., Fogel, D.: How to Solve It: Modern Heuristics. Springer, New York (2002)

    Google Scholar 

  8. Kirkpatrick, G.C., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  9. Hinton, G., Sejnowski, T., Ackley, D.: Genetic algorithms. Cognitive Science, 66–72 (1992)

    Google Scholar 

  10. Lawler, E.L., Wood, D.E.: Brand-and-bound methods: A survey. OR 14, 699–719 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  11. E.G.C. Jr.: Computer and Job-Shop Scheduling. Wiley-Interscience, New York (1976)

    Google Scholar 

  12. Szeliski, R., Zabih, R.: An experimental comparison of stereo algorithms. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 1–19. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Huang, X.: A general framework for constructing cooperative global optimization algorithms. In: 4th International Conference on Frontiers in Global Optimization (2003)

    Google Scholar 

  14. Huang, X.: Cooperative optimization for solving large scale combinatorial problems. In: Grundel, D., Murphey, R., Pardalos, P. (eds.) 4th International Conference on Cooperative Control and Optimization, Destin, Florida, U.S.A. (2003)

    Google Scholar 

  15. Rosenfeld, A., Hummel, R., Zucker, S.: Scene labelling by relaxation operations. IEEE Transactions on System, Man, and Cybernetics SMC-6, 420 (1976)

    Article  MathSciNet  Google Scholar 

  16. Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, X. (2004). Cooperative Optimization for Energy Minimization in Computer Vision: A Case Study of Stereo Matching. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics