Skip to main content

Fast Monocular Bayesian Detection of Independently Moving Objects by a Moving Observer

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

A fast algorithm for the detection of independently moving objects by an also moving observer by means of investigating optical flow fields is presented. Since the measurement of optical flow is a computationally expensive operation, it is necessary to restrict the number of flow measurements. The proposed algorithm uses two different ways to determine the positions, where optical flow is calculated. A part of the positions is determined using a particle filter, while the other part of the positions is determined using a random variable, which is distributed according to an initialization distribution. This approach results in a restricted number of optical flow calculations leading to a robust real time detection of independently moving objects on standard consumer PCs.

This work was supported by BMBF Grant No. 1959156C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barron, J.L., Fleet, D.J., Beauchemin, S.S., Burkitt, T.A.: Performance Of Optical Flow Techniques. In: Proc. CVPR, vol. 92, pp. 236–242 (1994)

    Google Scholar 

  2. Black, M.J., Fleet, D.J.: Probabilistic Detection and Tracking of Motion Discontinuities. In: ICCV (1999)

    Google Scholar 

  3. Förstner, W.: A feature based correspondence algorithm for image matching. International Archives of Photogrammetry and Remote Sensing 26-3/3, 150–166 (1986)

    Google Scholar 

  4. Gehrig, S., Wagner, S., Franke, U.: SystemArchitecture for an Intersection Assistant Fusing Image, Map and GPS Information. In: Proc. IEEE Intelligent Vehicles (2003)

    Google Scholar 

  5. Hue, C., Le Cardre, J.-P., Perez, P.: Tracking Multiple Objects with Particle Filtering. IEEE Transactions on Aerospace and Electronic Systems 38(3), 791–812 (2002)

    Article  Google Scholar 

  6. Khan, Z., Balch, T., Dellaert, F.: An MCMC-Based Particle Filter for Tracking Multiple Interacting Targets. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 279–290. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Hartley, R., Zisserman, A.: Multiple View Geometry. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  8. Isard, M., Blake, A.: Condensation – conditional density propagation for visual tracking. IJCV 29(1), 5–28 (1998)

    Article  Google Scholar 

  9. Isard, M., Blake, A.: ICONDENSATION: Unifying low-level and high-level tracking in a stochastic framework. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 893–908. Springer, Heidelberg (1998)

    Google Scholar 

  10. Isard, M., McCormick, J.: BraMBLe: A Bayesian Multiple-Blob Tracker. In: ICCV (2001)

    Google Scholar 

  11. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. DARPA IU Workshop, pp. 121–130 (1981)

    Google Scholar 

  12. Perez, P., et al.: Color-Based Probabilistic Tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Pollefeys, M., Koch, R., Van Gool, L.J.: Self-Calibration and Metric Reconstruction in Spite of Varying and Unknown Internal Camera Parameters. IJCV 32(1), 7–25 (1999)

    Article  Google Scholar 

  14. Woelk, F., Gehrig, S., Koch, R.: A Monocular Image Based Intersection Assistant. IEEE Intelligent Vehicles, Parma, Italy (2004)

    Google Scholar 

  15. Vermaak, J., et al.: Maintaining Multi-Modality through Mixture Tracking. In: ICCV (2003)

    Google Scholar 

  16. Zelek, J.S.: Bayesian Real-time Optical Flow. In: Proc VI (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Woelk, F., Koch, R. (2004). Fast Monocular Bayesian Detection of Independently Moving Objects by a Moving Observer. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics