Abstract
The Gaussian scale-space is a standard tool in image analysis. While continuous in theory, it is generally realized with fixed regular grids in practice. This prevents the use of algorithms which require continuous and differentiable data and adaptive step size control, such as numerical path following. We propose an efficient continuous approximation of the Gaussian scale-space that removes this restriction and opens up new ways to subpixel feature detection and scale adaptation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bergholm, F.: Edge Focusing. IEEE Trans. Pattern Analysis and Machine Intelligence 9(6), 726–741 (1987)
Burt, P.: The Pyramid as a Structure for Efficient Computation. In: Rosenfeld, A. (ed.) Multiresolution Image Processing and Analysis, pp. 6–35. Springer, Heidelberg (1984)
Crowley, J., Riff, O.: Fast Computation of Scale Normalized Gaussian Receptive Fields. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 584–598. Springer, Heidelberg (2003)
Deriche, R.: Fast algorithms for low-level vision. IEEE Trans. Pattern Analysis and Machine Intelligence 1(12), 78–88 (1990)
Haralick, R., Shapiro, L.: Computer and Robot Vision, vol. 1. Addison-Wesley, Reading (1992)
Köthe, U.: Edge and Junction Detection with an Improved Structure Tensor. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 25–32. Springer, Heidelberg (2003)
Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Dordrecht (1994)
Lindeberg, T., Bretzner, L.: Real-time scale selection in hybrid multi-scale representations. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 148–163. Springer, Heidelberg (2003)
Lowe, D.: Object recognition from local scale-invariant features. In: Proc. 7th Intl. Conf. on Computer Vision, pp. 1150–1157 (1999)
Overington, I.: Computer Vision. Elsevier, Amsterdam (1992)
Unser, M., Aldroubi, A., Eden, M.: B-Spline Signal Processing. IEEE Trans. Signal Processing 41(2), 821-833 (part I), 834-848 (part II) (1993)
Weiss, I.: High-Order Differentiation Filters That Work. IEEE Trans. Pattern Analysis and Machine Intelligence 16(7), 734–739 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Köthe, U. (2004). Accurate and Efficient Approximation of the Continuous Gaussian Scale-Space. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_43
Download citation
DOI: https://doi.org/10.1007/978-3-540-28649-3_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22945-2
Online ISBN: 978-3-540-28649-3
eBook Packages: Springer Book Archive