Skip to main content

Accurate and Efficient Approximation of the Continuous Gaussian Scale-Space

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

The Gaussian scale-space is a standard tool in image analysis. While continuous in theory, it is generally realized with fixed regular grids in practice. This prevents the use of algorithms which require continuous and differentiable data and adaptive step size control, such as numerical path following. We propose an efficient continuous approximation of the Gaussian scale-space that removes this restriction and opens up new ways to subpixel feature detection and scale adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bergholm, F.: Edge Focusing. IEEE Trans. Pattern Analysis and Machine Intelligence 9(6), 726–741 (1987)

    Article  Google Scholar 

  2. Burt, P.: The Pyramid as a Structure for Efficient Computation. In: Rosenfeld, A. (ed.) Multiresolution Image Processing and Analysis, pp. 6–35. Springer, Heidelberg (1984)

    Google Scholar 

  3. Crowley, J., Riff, O.: Fast Computation of Scale Normalized Gaussian Receptive Fields. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 584–598. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Deriche, R.: Fast algorithms for low-level vision. IEEE Trans. Pattern Analysis and Machine Intelligence 1(12), 78–88 (1990)

    Article  Google Scholar 

  5. Haralick, R., Shapiro, L.: Computer and Robot Vision, vol. 1. Addison-Wesley, Reading (1992)

    Google Scholar 

  6. Köthe, U.: Edge and Junction Detection with an Improved Structure Tensor. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 25–32. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Dordrecht (1994)

    Google Scholar 

  8. Lindeberg, T., Bretzner, L.: Real-time scale selection in hybrid multi-scale representations. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 148–163. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Lowe, D.: Object recognition from local scale-invariant features. In: Proc. 7th Intl. Conf. on Computer Vision, pp. 1150–1157 (1999)

    Google Scholar 

  10. Overington, I.: Computer Vision. Elsevier, Amsterdam (1992)

    MATH  Google Scholar 

  11. Unser, M., Aldroubi, A., Eden, M.: B-Spline Signal Processing. IEEE Trans. Signal Processing 41(2), 821-833 (part I), 834-848 (part II) (1993)

    Google Scholar 

  12. Weiss, I.: High-Order Differentiation Filters That Work. IEEE Trans. Pattern Analysis and Machine Intelligence 16(7), 734–739 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Köthe, U. (2004). Accurate and Efficient Approximation of the Continuous Gaussian Scale-Space. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics