Abstract
We describe a method for selecting optimal actions affecting the sensors in a probabilistic state estimation framework, with an application in selecting optimal zoom levels for a motor-controlled camera in an object tracking task. The action is selected to minimize the expected entropy of the state estimate. The contribution of this paper is the ability to incorporate varying costs into the action selection process by looking multiple steps into the future. The optimal action sequence then minimizes both the expected entropy and the costs it incurs. This method is then tested with an object tracking simulation, showing the benefits of multi-step versus single-step action selection in cases where the cameras’ zoom control motor is insufficiently fast.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bar-Shalom, Y., Fortmann, T.E.: Tracking and Data Association. Academic Press, Boston (1988)
Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications. John Wiley and Sons, New York (1991)
Deinzer, F., Denzler, J., Niemann, H.: Viewpoint Selection – Planning Optimal Sequences of Views for Object Recognition. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 65–73. Springer, Heidelberg (2003)
Denzler, J., Brown, C.M., Niemann, H.: Optimal Camera Parameter Selection for State Estimation with Applica tions in Object Recognition. In: Mustererkennung 2001, Heidelberg, pp. 305–312 (2001)
Denzler, J., Zobel, M., Niemann, H.: Information Theoretic Focal Length Selection for Real-Time Active 3-D Object Tracking. In: International Conference on Computer Vision, Nice, France, pp. 400–407 (2003)
Fayman, J., Sudarsky, O., Rivlin, E., Rudzsky, M.: Zoom tracking and its applications. Machine Vision and Applications 13(1), 25–37
Isard, M., Blake, A.: Condensation — conditional density propagation for visual tracking 29(1), 5–28 (1998)
Kalman, R.E.: A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 35–44 (1960)
Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning. Artificial Intelligence 6(4), 293–326 (1975)
Paletta, L., Pinz, A.: Active object recognition by view integration and reinforcement learnin g. Robotics and Autonomous Systems 31(1-2), 71–86 (2000)
Tordoff, B., Murray, D.W.: Reactive zoom control while tracking using an affine camera. In: Proc 12th British Machine Vision Conference, September 2001, vol. 1, pp. 53–62 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Deutsch, B., Zobel, M., Denzler, J., Niemann, H. (2004). Multi-step Entropy Based Sensor Control for Visual Object Tracking. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_44
Download citation
DOI: https://doi.org/10.1007/978-3-540-28649-3_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22945-2
Online ISBN: 978-3-540-28649-3
eBook Packages: Springer Book Archive