Skip to main content

Multi-step Entropy Based Sensor Control for Visual Object Tracking

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

We describe a method for selecting optimal actions affecting the sensors in a probabilistic state estimation framework, with an application in selecting optimal zoom levels for a motor-controlled camera in an object tracking task. The action is selected to minimize the expected entropy of the state estimate. The contribution of this paper is the ability to incorporate varying costs into the action selection process by looking multiple steps into the future. The optimal action sequence then minimizes both the expected entropy and the costs it incurs. This method is then tested with an object tracking simulation, showing the benefits of multi-step versus single-step action selection in cases where the cameras’ zoom control motor is insufficiently fast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bar-Shalom, Y., Fortmann, T.E.: Tracking and Data Association. Academic Press, Boston (1988)

    MATH  Google Scholar 

  2. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications. John Wiley and Sons, New York (1991)

    Google Scholar 

  3. Deinzer, F., Denzler, J., Niemann, H.: Viewpoint Selection – Planning Optimal Sequences of Views for Object Recognition. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 65–73. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Denzler, J., Brown, C.M., Niemann, H.: Optimal Camera Parameter Selection for State Estimation with Applica tions in Object Recognition. In: Mustererkennung 2001, Heidelberg, pp. 305–312 (2001)

    Google Scholar 

  5. Denzler, J., Zobel, M., Niemann, H.: Information Theoretic Focal Length Selection for Real-Time Active 3-D Object Tracking. In: International Conference on Computer Vision, Nice, France, pp. 400–407 (2003)

    Google Scholar 

  6. Fayman, J., Sudarsky, O., Rivlin, E., Rudzsky, M.: Zoom tracking and its applications. Machine Vision and Applications 13(1), 25–37

    Google Scholar 

  7. Isard, M., Blake, A.: Condensation — conditional density propagation for visual tracking 29(1), 5–28 (1998)

    Google Scholar 

  8. Kalman, R.E.: A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 35–44 (1960)

    Google Scholar 

  9. Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning. Artificial Intelligence 6(4), 293–326 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  10. Paletta, L., Pinz, A.: Active object recognition by view integration and reinforcement learnin g. Robotics and Autonomous Systems 31(1-2), 71–86 (2000)

    Article  Google Scholar 

  11. Tordoff, B., Murray, D.W.: Reactive zoom control while tracking using an affine camera. In: Proc 12th British Machine Vision Conference, September 2001, vol. 1, pp. 53–62 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deutsch, B., Zobel, M., Denzler, J., Niemann, H. (2004). Multi-step Entropy Based Sensor Control for Visual Object Tracking. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics