Skip to main content

A Statistical Measure for Evaluating Regions-of-Interest Based Attention Algorithms

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

We present a new measure for evaluation of algorithms for the detection of regions of interest (ROI) in, e.g., attention mechanisms. In contrast to existing measures, the present approach handles situations of order uncertainties, where the order for some ROIs is crucial, while for others it is not. We compare the results of several measures in some theoretical cases as well as some real applications. We further demonstrate how our measure can be used to evaluate algorithms for ROI detection, particularly the model of Itti and Koch for bottom-up data-driven attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Corman, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. McGraw-Hill, New York (1997)

    Google Scholar 

  2. Deco, G., Zihl, J.: Neurodynamical Mechanism of Binding and Selective Attention for Visual Search. Neurocomputing 32-33, 693–699 (2000)

    Article  Google Scholar 

  3. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on pattern analysis and machine intelligence 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  4. Itti, L., Koch, C.: A Comparison of Feature Combination Strategies for Saliency-Based Visual Attention Systems. In: SPIE human vision and electronic imaging IV(HVEI 1999), San Jose, CA, pp. 473–482 (1999)

    Google Scholar 

  5. Kohonen, T.: Modeling of automatic capture and focusing of visual attention. Proceedings of the National Academy of Sciences of the USA 99(15), 9813–9818 (2002)

    Article  Google Scholar 

  6. Mazer, J.A., Gallant, J.L.: Goal-Related Activity in V4 during Free Viewing Visual Search: Evidence for a Ventral Stream Visual Salience Map. Neuron 40, 1241–1250 (2003)

    Article  Google Scholar 

  7. Nothdurft, H.C.: Texture segmentation and pop-out from orientation contrast. Vision Research 31, 1073–1078 (1991)

    Article  Google Scholar 

  8. Stark, L.W., Choi, Y.S.: Experimental Metaphysics: The scanpath as an epistemological mechanism. In: Zangemeister, W.H., Stiehl, H.S., Freska, C. (eds.) Visual attention and cognition, pp. 3–69. Elsevier Science B.V., Amsterdam

    Google Scholar 

  9. Tsotsos, J.K., Culhane, S.M., Wai, W.Y.K., Lai, Y.H., Davis, N., Nuflo, F.: Modeling visual attention via selective tuning. Artificial Intelligence 78(1-2), 507–545 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clauss, M., Bayerl, P., Neumann, H. (2004). A Statistical Measure for Evaluating Regions-of-Interest Based Attention Algorithms. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics