Skip to main content

Kernel Density Estimation and Intrinsic Alignment for Knowledge-Driven Segmentation: Teaching Level Sets to Walk

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

We address the problem of image segmentation with statistical shape priors in the context of the level set framework. Our paper makes two contributions: Firstly, we propose a novel multi-modal statistical shape prior which allows to encode multiple fairly distinct training shapes. This prior is based on an extension of classical kernel density estimators to the level set domain. Secondly, we propose an intrinsic registration of the evolving level set function which induces an invariance of the proposed shape energy with respect to translation. We demonstrate the advantages of this multi-modal shape prior applied to the segmentation and tracking of a partially occluded walking person.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brox, T., Weickert, J.: A TV flow based local scale measure for texture discrimination. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 578–590. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proc. IEEE Intl. Conf. on Comp. Vis., Boston, USA, pp. 694–699 (1995)

    Google Scholar 

  3. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  4. Chan, T., Zhu, W.: Level set based shape prior segmentation. Technical Report 03-66, Computational Applied Mathematics, UCLA, Los Angeles (2003)

    Google Scholar 

  5. Chen, Y., Tagare, H., Thiruvenkadam, S., Huang, F., Wilson, D., Gopinath, K.S., Briggs, R.W., Geiser, E.: Using shape priors in geometric active contours in a variational framework. Int. J. of Computer Vision 50(3), 315–328 (2002)

    Article  MATH  Google Scholar 

  6. Cremers, D.: A variational framework for image segmentation combining motion estimation and shape regularization. In: Dyer, C., Perona, P. (eds.) IEEE Conf. on Comp. Vis. and Patt. Recog., June 2003, vol. 1, pp. 53–58 (2003)

    Google Scholar 

  7. Cremers, D., Kohlberger, T., Schnörr, C.: Shape statistics in kernel space for variational image segmentation. Pattern Recognition 36(9), 1929–1943 (2003)

    Article  MATH  Google Scholar 

  8. Cremers, D., Soatto, S.: A pseudo-distance for shape priors in level set segmentation. In: Paragios, N. (ed.) IEEE 2nd Int. Workshop on Variational, Geometric and Level Set Methods, Nice, pp. 169–176 (2003)

    Google Scholar 

  9. Cremers, D., Sochen, N., Schnörr, C.: Multiphase dynamic labeling for variational recognition-driven image segmentation. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 74–86. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Dervieux, A., Thomasset, F.: A finite element method for the simulation of Raleigh-Taylor instability. Springer Lecture Notes in Math. 771, 145–158 (1979)

    Article  MathSciNet  Google Scholar 

  11. Kichenassamy, S., Kumar, A., Olver, P.J., Tannenbaum, A., Yezzi, A.J.: Gradient flows and geometric active contour models. In: Proc. IEEE Intl. Conf. on Comp. Vis, Boston, USA, pp. 810–815 (1995)

    Google Scholar 

  12. Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical shape influence in geodesic active contours. In: Proc. Conf. Computer Vis. and Pattern Recog., Hilton Head Island, SC, June 13-15, vol. 1, pp. 316–323 (2000)

    Google Scholar 

  13. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE PAMI 17(2), 158–175 (1995)

    Google Scholar 

  14. Moelich, M., Chan, T.: Tracking objects with the chan-vese algorithm. Technical Report 03-14, Computational Applied Mathematics, UCLA, Los Angeles (2003)

    Google Scholar 

  15. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Osher, S.J., Sethian, J.A.: Fronts propagation with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. of Comp. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. Int. J. of Computer Vision 46(3), 223–247 (2002)

    Article  MATH  Google Scholar 

  18. Parzen, E.: On the estimation of a probability density function and the mode. Annals of Mathematical Statistics 33, 1065–1076 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rosenblatt, F.: Remarks on some nonparametric estimates of a density function. Annals of Mathematical Statistics 27, 832–837 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, E., Willsky, A.: Model–based curve evolution technique for image segmentation. In: Comp. Vision Patt. Recog., Kauai, Hawaii, pp. 463–468 (2001)

    Google Scholar 

  22. Tsai, A., Yezzi, A.J., Willsky, A.S.: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. on Image Processing 10(8), 1169–1186 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cremers, D., Osher, S.J., Soatto, S. (2004). Kernel Density Estimation and Intrinsic Alignment for Knowledge-Driven Segmentation: Teaching Level Sets to Walk. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics