Abstract
We address the problem of image segmentation with statistical shape priors in the context of the level set framework. Our paper makes two contributions: Firstly, we propose a novel multi-modal statistical shape prior which allows to encode multiple fairly distinct training shapes. This prior is based on an extension of classical kernel density estimators to the level set domain. Secondly, we propose an intrinsic registration of the evolving level set function which induces an invariance of the proposed shape energy with respect to translation. We demonstrate the advantages of this multi-modal shape prior applied to the segmentation and tracking of a partially occluded walking person.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brox, T., Weickert, J.: A TV flow based local scale measure for texture discrimination. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 578–590. Springer, Heidelberg (2004)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proc. IEEE Intl. Conf. on Comp. Vis., Boston, USA, pp. 694–699 (1995)
Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Processing 10(2), 266–277 (2001)
Chan, T., Zhu, W.: Level set based shape prior segmentation. Technical Report 03-66, Computational Applied Mathematics, UCLA, Los Angeles (2003)
Chen, Y., Tagare, H., Thiruvenkadam, S., Huang, F., Wilson, D., Gopinath, K.S., Briggs, R.W., Geiser, E.: Using shape priors in geometric active contours in a variational framework. Int. J. of Computer Vision 50(3), 315–328 (2002)
Cremers, D.: A variational framework for image segmentation combining motion estimation and shape regularization. In: Dyer, C., Perona, P. (eds.) IEEE Conf. on Comp. Vis. and Patt. Recog., June 2003, vol. 1, pp. 53–58 (2003)
Cremers, D., Kohlberger, T., Schnörr, C.: Shape statistics in kernel space for variational image segmentation. Pattern Recognition 36(9), 1929–1943 (2003)
Cremers, D., Soatto, S.: A pseudo-distance for shape priors in level set segmentation. In: Paragios, N. (ed.) IEEE 2nd Int. Workshop on Variational, Geometric and Level Set Methods, Nice, pp. 169–176 (2003)
Cremers, D., Sochen, N., Schnörr, C.: Multiphase dynamic labeling for variational recognition-driven image segmentation. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 74–86. Springer, Heidelberg (2004)
Dervieux, A., Thomasset, F.: A finite element method for the simulation of Raleigh-Taylor instability. Springer Lecture Notes in Math. 771, 145–158 (1979)
Kichenassamy, S., Kumar, A., Olver, P.J., Tannenbaum, A., Yezzi, A.J.: Gradient flows and geometric active contour models. In: Proc. IEEE Intl. Conf. on Comp. Vis, Boston, USA, pp. 810–815 (1995)
Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical shape influence in geodesic active contours. In: Proc. Conf. Computer Vis. and Pattern Recog., Hilton Head Island, SC, June 13-15, vol. 1, pp. 316–323 (2000)
Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE PAMI 17(2), 158–175 (1995)
Moelich, M., Chan, T.: Tracking objects with the chan-vese algorithm. Technical Report 03-14, Computational Applied Mathematics, UCLA, Los Angeles (2003)
Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 577–685 (1989)
Osher, S.J., Sethian, J.A.: Fronts propagation with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. of Comp. Phys. 79, 12–49 (1988)
Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. Int. J. of Computer Vision 46(3), 223–247 (2002)
Parzen, E.: On the estimation of a probability density function and the mode. Annals of Mathematical Statistics 33, 1065–1076 (1962)
Rosenblatt, F.: Remarks on some nonparametric estimates of a density function. Annals of Mathematical Statistics 27, 832–837 (1956)
Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002)
Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, E., Willsky, A.: Model–based curve evolution technique for image segmentation. In: Comp. Vision Patt. Recog., Kauai, Hawaii, pp. 463–468 (2001)
Tsai, A., Yezzi, A.J., Willsky, A.S.: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. on Image Processing 10(8), 1169–1186 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cremers, D., Osher, S.J., Soatto, S. (2004). Kernel Density Estimation and Intrinsic Alignment for Knowledge-Driven Segmentation: Teaching Level Sets to Walk. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-28649-3_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22945-2
Online ISBN: 978-3-540-28649-3
eBook Packages: Springer Book Archive