Skip to main content

Level Set Based Image Segmentation with Multiple Regions

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

We address the difficulty of image segmentation methods based on the popular level set framework to handle an arbitrary number of regions. While in the literature some level set techniques are available that can at least deal with a fixed amount of regions greater than two, there is very few work on how to optimise the segmentation also with regard to the number of regions. Based on a variational model, we propose a minimisation strategy that robustly optimises the energy in a level set framework, including the number of regions. Our evaluation shows that very good segmentations are found even in difficult situations.

We gratefully acknowledge partial funding by the Deutsche Forschungsgemeinschaft (DFG) and many interesting discussions with Mikaël Rousson from INRIA Sophia-Antipolis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brox, T., Rousson, M., Deriche, R., Weickert, J.: Unsupervised segmentation incorporating colour, texture, and motion. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 353–360. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Brox, T., Weickert, J.: A TV flow based local scale measure for texture discrimination. In: Pajdla, T., Matas, J. (eds.) Proc. 8th European Conference on Computer Vision, May 2004. LNCS, Springer, Berlin (2004) (to appear)

    Google Scholar 

  3. Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numerische Mathematik 66, 1–31 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proc. Fifth International Conference on Computer Vision, Cambridge, MA, June 1995, pp. 694–699. IEEE Computer Society Press, Los Alamitos (1995)

    Chapter  Google Scholar 

  5. Chan, T., Vese, L.: An active contour model without edges. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 141–151. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Cremers, D.: A multiphase levelset framework for variational motion segmentation. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 599–614. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Cremers, D., Sochen, N., Schnörr, C.: Towards recognition-based variational segmentation using shape priors and dynamic labeling. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 388–400. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Dervieux, A., Thomasset, F.: A finite element method for the simulation of Rayleigh–Taylor instability. In: Rautman, R. (ed.) Approximation Methods for Navier–Stokes Problems. Lecture Notes in Mathematics, vol. 771, pp. 145–158. Springer, Berlin (1979)

    Chapter  Google Scholar 

  9. Galun, M., Sharon, E., Basri, R., Brandt, A.: Texture segmentation by multiscale aggregation of filter responses and shape elements. In: Proc. IEEE International Conference on Computer Vision, Nice, France, October 2003, pp. 716–723 (2003)

    Google Scholar 

  10. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient flows and geometric active contour models. In: Proc. Fifth International Conference on Computer Vision, Cambridge, MA, June 1995, pp. 810–815. IEEE Computer Society Press, Los Alamitos (1995)

    Chapter  Google Scholar 

  11. Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical shape infuence in geodesic active contours. In: Proc. 2000 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, June 2000, vol. 1, pp. 316–323. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  12. Malik, J., Belongie, S., Shi, J., Leung, T.K.: Textons, contours and regions: cue integration in image segmentation. In: Proc. IEEE International Conference on Computer Vision, Corfu, Greece, September 1999, pp. 918–925 (1999)

    Google Scholar 

  13. Mumford, D., Shah, J.: Boundary detection by minimizing functionals, I. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, June 1985, pp. 22–26. IEEE Computer Society Press, Los Alamitos (1985)

    Google Scholar 

  14. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Paragios, N., Deriche, R.: A PDE-based level-set approach for detection and tracking of moving objects. In: Proc. Sixth International Conference on Computer Vision, Bombay, India, January 1998, pp. 1139–1145 (1998)

    Google Scholar 

  16. Paragios, N., Deriche, R.: Coupled geodesic active regions for image segmentation: A level set approach. In: Proc. Sixth European Conference on Computer Vision, Dublin, Ireland, vol. 2, pp. 224–240 (2000)

    Google Scholar 

  17. Rousson, M., Brox, T., Deriche, R.: Active unsupervised texture segmentation on a diffusion based feature space. In: Proc. 2003 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Madison, WI, June 2003, vol. 2, pp. 699–704 (2003)

    Google Scholar 

  18. Samson, C., Blanc-Féraud, L., Aubert, G., Zerubia, J.: A level set model for image classification. International Journal of Computer Vision 40(3), 187–197 (2000)

    Article  MATH  Google Scholar 

  19. Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  20. Yezzi, A., Tsai, A., Willsky, A.: A statistical approach to snakes for bimodal and trimodal imagery. In: Proc. 7th International Conference on Computer Vision, Kerkyra, Greece, September 1999, vol. 2, pp. 898–903 (1999)

    Google Scholar 

  21. Zhao, H., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. Journal of Computational Physics 127, 179–195 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhu, S., Yuille, A.: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(9), 884–900 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brox, T., Weickert, J. (2004). Level Set Based Image Segmentation with Multiple Regions. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics