Abstract
We address the difficulty of image segmentation methods based on the popular level set framework to handle an arbitrary number of regions. While in the literature some level set techniques are available that can at least deal with a fixed amount of regions greater than two, there is very few work on how to optimise the segmentation also with regard to the number of regions. Based on a variational model, we propose a minimisation strategy that robustly optimises the energy in a level set framework, including the number of regions. Our evaluation shows that very good segmentations are found even in difficult situations.
We gratefully acknowledge partial funding by the Deutsche Forschungsgemeinschaft (DFG) and many interesting discussions with Mikaël Rousson from INRIA Sophia-Antipolis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brox, T., Rousson, M., Deriche, R., Weickert, J.: Unsupervised segmentation incorporating colour, texture, and motion. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 353–360. Springer, Heidelberg (2003)
Brox, T., Weickert, J.: A TV flow based local scale measure for texture discrimination. In: Pajdla, T., Matas, J. (eds.) Proc. 8th European Conference on Computer Vision, May 2004. LNCS, Springer, Berlin (2004) (to appear)
Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numerische Mathematik 66, 1–31 (1993)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proc. Fifth International Conference on Computer Vision, Cambridge, MA, June 1995, pp. 694–699. IEEE Computer Society Press, Los Alamitos (1995)
Chan, T., Vese, L.: An active contour model without edges. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 141–151. Springer, Heidelberg (1999)
Cremers, D.: A multiphase levelset framework for variational motion segmentation. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 599–614. Springer, Heidelberg (2003)
Cremers, D., Sochen, N., Schnörr, C.: Towards recognition-based variational segmentation using shape priors and dynamic labeling. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 388–400. Springer, Heidelberg (2003)
Dervieux, A., Thomasset, F.: A finite element method for the simulation of Rayleigh–Taylor instability. In: Rautman, R. (ed.) Approximation Methods for Navier–Stokes Problems. Lecture Notes in Mathematics, vol. 771, pp. 145–158. Springer, Berlin (1979)
Galun, M., Sharon, E., Basri, R., Brandt, A.: Texture segmentation by multiscale aggregation of filter responses and shape elements. In: Proc. IEEE International Conference on Computer Vision, Nice, France, October 2003, pp. 716–723 (2003)
Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient flows and geometric active contour models. In: Proc. Fifth International Conference on Computer Vision, Cambridge, MA, June 1995, pp. 810–815. IEEE Computer Society Press, Los Alamitos (1995)
Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical shape infuence in geodesic active contours. In: Proc. 2000 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, June 2000, vol. 1, pp. 316–323. IEEE Computer Society Press, Los Alamitos (2000)
Malik, J., Belongie, S., Shi, J., Leung, T.K.: Textons, contours and regions: cue integration in image segmentation. In: Proc. IEEE International Conference on Computer Vision, Corfu, Greece, September 1999, pp. 918–925 (1999)
Mumford, D., Shah, J.: Boundary detection by minimizing functionals, I. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, June 1985, pp. 22–26. IEEE Computer Society Press, Los Alamitos (1985)
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)
Paragios, N., Deriche, R.: A PDE-based level-set approach for detection and tracking of moving objects. In: Proc. Sixth International Conference on Computer Vision, Bombay, India, January 1998, pp. 1139–1145 (1998)
Paragios, N., Deriche, R.: Coupled geodesic active regions for image segmentation: A level set approach. In: Proc. Sixth European Conference on Computer Vision, Dublin, Ireland, vol. 2, pp. 224–240 (2000)
Rousson, M., Brox, T., Deriche, R.: Active unsupervised texture segmentation on a diffusion based feature space. In: Proc. 2003 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Madison, WI, June 2003, vol. 2, pp. 699–704 (2003)
Samson, C., Blanc-Féraud, L., Aubert, G., Zerubia, J.: A level set model for image classification. International Journal of Computer Vision 40(3), 187–197 (2000)
Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision 50(3), 271–293 (2002)
Yezzi, A., Tsai, A., Willsky, A.: A statistical approach to snakes for bimodal and trimodal imagery. In: Proc. 7th International Conference on Computer Vision, Kerkyra, Greece, September 1999, vol. 2, pp. 898–903 (1999)
Zhao, H., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. Journal of Computational Physics 127, 179–195 (1996)
Zhu, S., Yuille, A.: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(9), 884–900 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brox, T., Weickert, J. (2004). Level Set Based Image Segmentation with Multiple Regions. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_51
Download citation
DOI: https://doi.org/10.1007/978-3-540-28649-3_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22945-2
Online ISBN: 978-3-540-28649-3
eBook Packages: Springer Book Archive