Skip to main content

CVPIC Colour/Shape Histograms for Compressed Domain Image Retrieval

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

Compressed domain image retrieval allows image indexing to be performed directly on the compressed data without the need of decoding. This approach hence provides a significant gain in terms of speed and also eliminates the need to store feature indices. In this paper we introduce a compressed domain image retrieval technique based on the Colour Visual Pattern Image Coding (CVPIC) compression algorithm. CVPIC represents an image coding technique where the compressed form is directly meaningful. Data that is readily available includes information on colour and edge (shape) descriptors of image subblocks. It is this information that is utilised by calculating a combined colour and shape histogram. Experimental results on the UCID dataset show this novel approach to be both efficient and effective, outperforming methods such as colour histograms, colour coherence vectors, and colour correlograms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bach, J., Fuller, C., Gupta, A., Hampapur, A., Horowitz, B., Humphrey, R., Jain, R.: The Virage image search engine: An open framework for image management. In: Storage and Retrieval for Image and Video Databases. Proceedings of SPIE, vol. 2670, pp. 76–87 (1996)

    Google Scholar 

  2. Chen, D., Bovik, A.: Visual pattern image coding. IEEE Trans. Communications 38, 2137–2146 (1990)

    Article  Google Scholar 

  3. CIE. Colorimetry. CIE Publications 15.2, Commission International de L’Eclairage, 2nd edn. (1986)

    Google Scholar 

  4. Faloutsos, C., Equitz, W., Flickner, M., Niblack, W., Petkovic, D., Barber, R.: Efficient and effective querying by image content. Journal of Intelligent Information Retrieval 3(3/4), 231–262 (1994)

    Article  Google Scholar 

  5. Huang, J., Kumar, S.R., Mitra, M., Zhu, W.-J., Zabih, R.: Image indexing using color correlograms. In: IEEE Int. Conference Computer Vision and Pattern Recognition, pp. 762–768 (1997)

    Google Scholar 

  6. Jain, A.K., Vailaya, A.: Image retrieval using color and shape. Pattern Recognition 29(8), 1233–1244 (1996)

    Article  Google Scholar 

  7. Niblack, W., Barber, R., Equitz, W., Flickner, M.D., Glasman, D., Petkovic, D., Yanker, P.: The QBIC project: Querying images by content using color, texture and shape. In: Conf. on Storage and Retrieval for Image and Video Databases. Proceedings of SPIE, vol. 1908, pp. 173–187 (1993)

    Google Scholar 

  8. Pass, G., Zabih, R.: Histogram refinement for content-based image retrieval. In: 3rd IEEE Workshop on Applications of Computer Vision, pp. 96–102 (1996)

    Google Scholar 

  9. Picard, R.W.: Content access for image/video coding: The fourth criterion. Technical Report 195, MIT Media Lab (1994)

    Google Scholar 

  10. Qiu, G.: Colour image indexing using BTC. IEEE Trans. Image Processing 12(1), 93–101 (2003)

    Article  Google Scholar 

  11. Schaefer, G., Qiu, G.: Midstream content access based on colour visual pattern coding. In: Storage and Retrieval for Image and Video Databases VIII. Proceedings of SPIE, vol. 3972, pp. 284–292 (2000)

    Google Scholar 

  12. Schaefer, G., Qiu, G., Luo, M.R.: Visual pattern based colour image compression. In: Visual Communication and Image Processing 1999. Proceedings of SPIE, vol. 3653, pp. 989–997 (1999)

    Google Scholar 

  13. Schaefer, G., Stich, M.: On the influence of image compression on the performance of content based image retrieval. In: 6th Int. Conference on VISual Information Systems, pp. 426–431 (2003)

    Google Scholar 

  14. Schaefer, G., Stich, M.: UCID - An Uncompressed Colour Image Database. In: Storage and Retrieval Methods and Applications for Multimedia 2004. Proceedings of SPIE, vol. 5307, pp. 472–480 (2004)

    Google Scholar 

  15. Stehling, R.O., Nascimento, M.A., Falcao, A.X.: A compact and efficient image retrieval approach based on border/interior pixel classification. In: Proc. 11th Int. Conf. on Information and Knowledge Management, pp. 102–109 (2002)

    Google Scholar 

  16. Swain, M.J., Ballard, D.H.: Color indexing. Int. Journal Computer Vision 7(11), 11–32 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schaefer, G. (2004). CVPIC Colour/Shape Histograms for Compressed Domain Image Retrieval. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics