Skip to main content

Adaptive Computer Vision: Online Learning for Object Recognition

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

The “life” of most neural vision systems splits into a one-time training phase and an application phase during which knowledge is no longer acquired. This is both technically inflexible and cognitively unsatisfying. Here we propose an appearance based vision system for object recognition which can be adapted online, both to acquire visual knowledge about new objects and to correct erroneous classification. The system works in an office scenario, acquisition of object knowledge is triggered by hand gestures. The neural classifier offers two ways of training: Firstly, the new samples can be added immediately to the classifier to obtain a running system at once, though at the cost of reduced classification performance. Secondly, a parallel processing branch adapts the classification system thoroughly to the enlarged image domain and loads the new classifier to the running system when ready.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Heidemann, G., Rae, R., Bekel, H., Bax, I., Ritter, H.: Integrating context-free and context-dependent attentional mechanisms for gestural object reference. In: Proc. Int’l Conf. Cognitive Vision Systems, Graz, Austria, pp. 22–33 (2003)

    Google Scholar 

  2. Heidemann, G., Ritter, H.: Efficient Vector Quantization Using the WTA-rule with Activity Equalization. Neural Processing Letters 13(1), 17–30 (2001)

    Article  MATH  Google Scholar 

  3. Kahn, R.E., Swain, M.J., Prokopowicz, P.N., Firby, R.J.: Gesture recognition using the perseus architecture. Technical Report TR-96-04, 19 (1996)

    Google Scholar 

  4. Kalinke, T., von Seelen, W.: Entropie als Maß des lokalen Informationsgehalts in Bildern zur Realisierung einer Aufmerksamkeitssteuerung. In: Jähne, B., Geißler, P., Haußecker, H., Hering, F. (eds.) Mustererkennung 1996, pp. 627–634. Springer, Heidelberg (1996)

    Google Scholar 

  5. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)

    Google Scholar 

  6. Leonardis, A., Bischof, H., Maver, J.: Multiple eigenspaces. Pattern Recognition 35(11), 2613–2627 (2002)

    Article  MATH  Google Scholar 

  7. Andersen, H.J., Stoerring, M., Granum, E.: Physics-based modelling of human Skin colour under mixed illuminants. Robotics and Autonomous Systems 35(3-4), 131–142 (2001)

    Article  MATH  Google Scholar 

  8. Mel, B.W.: SEEMORE: Combining color, shape, and texture histogramming in a neurally-inspired approach to visual object recognition. Neural Computation 9, 777–804 (1997)

    Article  Google Scholar 

  9. Murase, H., Nayar, S.K.: Visual Learning and Recognition of 3-D Objects from Appearance. Int’l J. of Computer Vision 14, 5–24 (1995)

    Article  Google Scholar 

  10. Ossola, J.C., Bremond, F., Thonnat, M.: A communication level in a distributed architecture for object recognition. In: 8th International Conference on Systems Research Informatics and Cybernetics (August 1996)

    Google Scholar 

  11. Ritter, H.J., Martinetz, T.M., Schulten, K.J.: Neuronale Netze. Addison-Wesley, München (1992)

    MATH  Google Scholar 

  12. Sanger, T.D.: Optimal Unsupervised Learning in a Single-Layer Linear Feedforward Neural Network. Neural Networks 2, 459–473 (1989)

    Article  Google Scholar 

  13. Theis, C., Iossifidis, I., Steinhage, A.: Image Processing Methods for Interactive Robot Control. In: Proc. IEEE Roman International Workshop on Robot-Human Interactive Communication, Bordeaux and Paris, France (2001)

    Google Scholar 

  14. Tipping, M.E., Bishop, C.M.: Mixtures of probabilistic principal component analyzers. Neural Computation 11(2), 443–482 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bekel, H., Bax, I., Heidemann, G., Ritter, H. (2004). Adaptive Computer Vision: Online Learning for Object Recognition. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics