Skip to main content

A Probabilistic Framework for Robust and Accurate Matching of Point Clouds

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

We present a probabilistic framework for matching of point clouds. Variants of the ICP algorithm typically pair points to points or points to lines. Instead, we pair data points to probability functions that are thought of having generated the data points. Then an energy function is derived from a maximum likelihood formulation. Each such distribution is a mixture of a bivariate Normal Distribution to capture the local structure of points and an explicit outlier term to achieve robustness. We apply our approach to the SLAM problem in robotics using a 2D laser range scanner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Besl, P.J., McKay, N.D.: A method for registration of 3d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

    Article  Google Scholar 

  2. Biber, P., Straßer, W.: The normal distributions transform: A new approach to laser scan matching. In: International Conference on Intelligent Robots and Systems, IROS (2003)

    Google Scholar 

  3. Black, M., Rangarajan, A.: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. IJCV 19(1), 57–92 (1996)

    Article  Google Scholar 

  4. Champleboux, G., Lavallee, S., Szeliski, R., Brunie, L.: From accurate range imaging sensor calibration to accurate model-based 3-d object localization. In: CVPR 1992, pp. 83–89 (1992)

    Google Scholar 

  5. Chen, Y., Medioni, G.G.: Object modeling by registration of multiple range images. Image and Vision Computing 10(3), 145–155 (1992)

    Article  Google Scholar 

  6. Cox, I.J.: Blanche: An experiment in guidance and navigation of an autonomous robot vehicle. IEEE Transactions on Robotics and Automation 7(2), 193–204 (1991)

    Article  Google Scholar 

  7. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM Classics in Applied Mathematics (1996)

    Google Scholar 

  8. Dorai, C., Weng, J., Jain, A.K.: Optimal registration of object views using range data. IEEE TPAMI 19(10), 1131–1138 (1997)

    Google Scholar 

  9. Fitzgibbon, A.: Robust registration of 2d and 3d point sets. In: Proceedings of the British Machine Vision Conference, pp. 662–670 (2001)

    Google Scholar 

  10. Frese, U., Duckett, T.: A multigrid approach for accelerating relaxationbased slam. In: Proc. IJCAI Workshop on Reasoning with Uncertainty in Robotics, RUR 2003 (2003)

    Google Scholar 

  11. Gutmann, J.-S., Konolige, K.: Incremental mapping of large cyclic environments. In: Proceedings of the 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation (1999)

    Google Scholar 

  12. Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: Robust online appearance models for visual tracking. IEEE Transactions on Pattern Analysis and Machine Learning 25(10) (October 2003)

    Google Scholar 

  13. Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching 2d range scans. In: CVPR 1994, pp. 935–938 (1994)

    Google Scholar 

  14. Lu, F., Milios, E.E.: Globally consistent range scan alignment for environment mapping. Autonomous Robots 4, 333–349 (1997)

    Article  Google Scholar 

  15. Masuda, T., Yokoya, N.: A robust method for registration and segmentation of multiple range images. CVIU 61(3), 295–307 (1995)

    Google Scholar 

  16. Meer, P., Mintz, D., Rosenfeld, A., Kim, D.Y.: Robust regression methods for computer vision: A review. IJCV 6(1), 59–70 (1991)

    Article  Google Scholar 

  17. Pulli, K.: Multiview registration for large data sets. In: Int. Conf. on 3D-DIM (1999)

    Google Scholar 

  18. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proc. of the Third Intl. Conf. on 3D-Dim, pp. 145–152 (2001)

    Google Scholar 

  19. Stewart, C.: Robust parameter estimation in computer vision. SIAM Review 41(3), 512–537 (1999)

    Article  Google Scholar 

  20. Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment – A modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–375. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  21. Zhang, Z.: Iterative point matching for registration of free-from curves and surfaces. International Journal of Computer Vision 13(2), 119–152 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Biber, P., Fleck, S., Strasser, W. (2004). A Probabilistic Framework for Robust and Accurate Matching of Point Clouds. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics