Skip to main content

3D Head Pose Estimation with Symmetry Based Illumination Model in Low Resolution Video

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

  • 2074 Accesses

Abstract

A head pose estimation system is described, which uses low resolution video sequences to determine the orientation and position of a head with respect to a internally calibrated camera. The system employs a feature based approach to roughly estimate the head pose and an approach using a symmetry based illumination model to refine the head pose independent of the users albedo and illumination influences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cipolla, R., Gee, A.: Fast visual tracking by temporal consensus. Image and Vision Computing 14, 105–114 (1995)

    Google Scholar 

  2. Jebara, T., Pentland, A.: Parameterized structure from motion for 3d adaptive feedback tracking of faces. Technical Report, Media Laboratory, MIT (1996)

    Google Scholar 

  3. Loy, G., Zelinsky, A.: Fast radial symmetry for detecting points of interest. IEEE Transactions on Pattern analysis and Machine Intelligence 25(8), 959–973 (2003)

    Article  Google Scholar 

  4. Matsuda, N., Wiles, C.S., Maki, A.: Hyperpatches for 3d model acquisition and tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(12), 1391–1403 (2001)

    Article  Google Scholar 

  5. Metaxas, D., DeCarlo, D.: The integration of optical flow and deformable models with applications to human face shape and motion estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (1996)

    Google Scholar 

  6. Kanade, T., Cohn, J.F., Xiao, J.: Robust full motion recovery of head by dynamic templates and re-registration techniques. Automated Face and Gesture Recognition (2002)

    Google Scholar 

  7. Basu, S., Pentland, A., Stroem, J., Jebara, T.: Real time tracking and modelling of faces: An ekf-based analysis by synthesis approach. In: Proceedings of the Modelling People Workshop at ICCV 1999 (1999)

    Google Scholar 

  8. Wu, Y., Toyama, K.: Wide-range, person and illumination insensitive head orientation estimation. Automated Face and Gesture Recognition (2000)

    Google Scholar 

  9. Pentland, P., Turk, M.A.: Face recognition using eigenfaces. In: CVPR 1992 (1991)

    Google Scholar 

  10. Hager, G.D., Belhumeur, P.N.: Efficient region tracking with parametric models of geometry and illumination. IEEE Transactions on Pattern analysis and Machine Intelligence 20(10), 1025–1039 (1998)

    Article  Google Scholar 

  11. Jones, M., Viola, P.: Robust real-time face detection. In: ICCV 2001 (2001)

    Google Scholar 

  12. Jacobs, D.W., Basri, R.: Lambertian reflectance and linear subspaces. IEEE Transactions on Pattern analysis and Machine Intelligence 25(2), 218–233 (2003)

    Article  Google Scholar 

  13. Sherrah, J., Gong, S.: Fusion of 2d face alignment and 3d head pose estimation for robust and real-time performance. In: Recognition,analysis and tracking of faces and gestures in real-time systems 1999 (1999)

    Google Scholar 

  14. La Cascia, M., Sclaroff, S.: Fast reliable head tracking under varying illumination. In: CVPR 1999 (1999)

    Google Scholar 

  15. : Labeled Graphs and Dynamic Link Matching for Face Recognition and Scene Analysis, 1st edn. Verlag Harri Deutsch (1996)

    Google Scholar 

  16. Kambhamettu, C., Zhang, Y.: Robust 3d head tracking under partial occlusion. Automated Face and Gesture Recognition (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gruendig, M., Hellwich, O. (2004). 3D Head Pose Estimation with Symmetry Based Illumination Model in Low Resolution Video. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics