Abstract
The goal of image registration is to find a transformation that aligns one image to another. In this paper we present a novel automatically image registration approach for images with structural distortions (e.g. a lesion within a human brain). The main idea is to define a suitable matching energy, which effectively measures the similarity between the images. The minimization of the matching energy is an ill-posed problem. Hence, we add a regularity energy borrowed from linear elasticity theory, which incorporates smoothness constraints into the displacement. The resulting energy functional is minimized by a Levenberg-Marquardt iteration-scheme. Finally, we give a two-dimensional example of these applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amit, Y.: A nonlinear variational problem for image matching. SIAM J. Sci. Comput. 15, 207–224 (1994)
Bajcsy, R., Kovacic, S.: Multiresolution elastic matching. Computer Vision 46, 1–21 (1989)
Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Akeley, K. (ed.) Siggraph 2000, Computer Graphics Proceedings, pp. 417–424. ACM Press / ACM SIGGRAPH / Addison Wesley Longman (2000)
Chan, T., Kang, S., Shen, J.: Euler’s elastica and curvature based inpaintings. J. Appl. Math. 63(2), 564–592 (2002)
Chan, T., Shen, J.: Mathematical models for local nontexture inpaintings. SIAM Journal on Applied Mathematics 62(3), 1019–1043 (2002)
Christensen, G., Miller, M., Vannier, M., Grenander, U.: Individualizing neuroanatomical atlases using a massively parallel computer. IEEE Computer 29(1), 32–38 (1996)
Clarenz, U., Henn, S., Rumpf, M., Witsch, K.: Relations between optimization and gradient flow methods with application to image registration. In: Proceedings of the 18th GAMM-Seminar Leipzig (2002)
Davis, M., Khotanzad, A., Flaming, D., Harms, S.: A physics based coordinate transformation for 3d medical images. IEEE Trans. on medical imaging 16(3), 317–328 (1997)
Droske, M., Rumpf, M.: A variational approach to non-rigid morphological registration. SIAM Appl. Math. 64(2), 668–687 (2004)
Fischer, B., Modersitzki, J.: Curvature based image registration. JMIV 18, 81–85 (2003)
Henn, S.: Numerische Lösung und Modellierung eines inversen Problems zur Assimilation digitaler Bilddaten, Phd thesis Heinrich-Heine-Universität Düsseldorf. Logos-Verlag Berlin, Berlin (2001)
Henn, S.: A levenberg-marquardt scheme for nonlinear image registration. BIT Numerical Mathematics 43(4), 743–759 (2003)
Henn, S., Hömke, L., Witsch, K.: A generalized image registration framework using incomplete image information – with applications to lesion mapping. Springer Series in Mathematics in Industry. Springer, Heidelberg (2004)
Henn, S., Schormann, T., Engler, K., Zilles, K., Witsch, K.: Elastische Anpassung in der digitalen Bildverarbeitung auf mehreren Auflösungsstufen mit Hilfe von Mehrgitterverfahren. In: Informatik aktuell Mustererkennung, pp. 392–399. Springer, Heidelberg (1997)
Henn, S., Witsch, K.: A multigrid-approach for minimizing a nonlinear functional for digital image matching. Computing 64(4), 339–348 (1999)
Henn, S., Witsch, K.: Iterative multigrid regularization techniques for image matching. SIAM J. Sci. Comput (SISC) 23(4), 1077–1093 (2001)
Henn, S., Witsch, K.: Multi-modal image registration using a variational approach. SIAM J. Sci. Comput (SISC) 25(4), 1429–1447 (2004)
Hömke, L., Weder, B., Binkofski, F., Amunts, K.: Lesion mapping in MRI data - an application of cytoarchitectonic probabilistic maps. In: WWW, Jülich. Second Vogt-Brodmann Symposium (2004), http://www.am.uni-duesseldorf.de/~hoemke/posters/lesionmapping.pdf
Weder, B., Amunts, K., Hömke, L., Mohlberg, H., Bönig, L., Fretz, C., Binkofski, F.: Lesion analysis in high-resolution MR-images of patients with unilateral tactile agnosia using cytoarchitectonic mapping. In: Presented at the 10th Annual metting of the Organization for Human Brain Mapping, Budapest, June 13-17 (2004)
Keeling, S., Ring, W.: Medical image registration and interpolation by optical flow with maximal rigidity. Journal of Mathematical Imaging and Vision JMIV (to appear)
Saad, Y.: Iterative methods for sparse linear systems (2000)
Van Loan, C.F.: Computational Frameworks for the Fourier Transform. Frontiers in Applied Mathematics, vol. 10. SIAM, Philadelphia (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Henn, S., Hömke, L., Witsch, K. (2004). Lesion Preserving Image Registration with Applications to Human Brains. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_61
Download citation
DOI: https://doi.org/10.1007/978-3-540-28649-3_61
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22945-2
Online ISBN: 978-3-540-28649-3
eBook Packages: Springer Book Archive