Skip to main content

Lesion Preserving Image Registration with Applications to Human Brains

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

The goal of image registration is to find a transformation that aligns one image to another. In this paper we present a novel automatically image registration approach for images with structural distortions (e.g. a lesion within a human brain). The main idea is to define a suitable matching energy, which effectively measures the similarity between the images. The minimization of the matching energy is an ill-posed problem. Hence, we add a regularity energy borrowed from linear elasticity theory, which incorporates smoothness constraints into the displacement. The resulting energy functional is minimized by a Levenberg-Marquardt iteration-scheme. Finally, we give a two-dimensional example of these applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amit, Y.: A nonlinear variational problem for image matching. SIAM J. Sci. Comput. 15, 207–224 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bajcsy, R., Kovacic, S.: Multiresolution elastic matching. Computer Vision 46, 1–21 (1989)

    Google Scholar 

  3. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Akeley, K. (ed.) Siggraph 2000, Computer Graphics Proceedings, pp. 417–424. ACM Press / ACM SIGGRAPH / Addison Wesley Longman (2000)

    Google Scholar 

  4. Chan, T., Kang, S., Shen, J.: Euler’s elastica and curvature based inpaintings. J. Appl. Math. 63(2), 564–592 (2002)

    MATH  MathSciNet  Google Scholar 

  5. Chan, T., Shen, J.: Mathematical models for local nontexture inpaintings. SIAM Journal on Applied Mathematics 62(3), 1019–1043 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Christensen, G., Miller, M., Vannier, M., Grenander, U.: Individualizing neuroanatomical atlases using a massively parallel computer. IEEE Computer 29(1), 32–38 (1996)

    Google Scholar 

  7. Clarenz, U., Henn, S., Rumpf, M., Witsch, K.: Relations between optimization and gradient flow methods with application to image registration. In: Proceedings of the 18th GAMM-Seminar Leipzig (2002)

    Google Scholar 

  8. Davis, M., Khotanzad, A., Flaming, D., Harms, S.: A physics based coordinate transformation for 3d medical images. IEEE Trans. on medical imaging 16(3), 317–328 (1997)

    Article  Google Scholar 

  9. Droske, M., Rumpf, M.: A variational approach to non-rigid morphological registration. SIAM Appl. Math. 64(2), 668–687 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fischer, B., Modersitzki, J.: Curvature based image registration. JMIV 18, 81–85 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Henn, S.: Numerische Lösung und Modellierung eines inversen Problems zur Assimilation digitaler Bilddaten, Phd thesis Heinrich-Heine-Universität Düsseldorf. Logos-Verlag Berlin, Berlin (2001)

    Google Scholar 

  12. Henn, S.: A levenberg-marquardt scheme for nonlinear image registration. BIT Numerical Mathematics 43(4), 743–759 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Henn, S., Hömke, L., Witsch, K.: A generalized image registration framework using incomplete image information – with applications to lesion mapping. Springer Series in Mathematics in Industry. Springer, Heidelberg (2004)

    Google Scholar 

  14. Henn, S., Schormann, T., Engler, K., Zilles, K., Witsch, K.: Elastische Anpassung in der digitalen Bildverarbeitung auf mehreren Auflösungsstufen mit Hilfe von Mehrgitterverfahren. In: Informatik aktuell Mustererkennung, pp. 392–399. Springer, Heidelberg (1997)

    Google Scholar 

  15. Henn, S., Witsch, K.: A multigrid-approach for minimizing a nonlinear functional for digital image matching. Computing 64(4), 339–348 (1999)

    Article  MathSciNet  Google Scholar 

  16. Henn, S., Witsch, K.: Iterative multigrid regularization techniques for image matching. SIAM J. Sci. Comput (SISC) 23(4), 1077–1093 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Henn, S., Witsch, K.: Multi-modal image registration using a variational approach. SIAM J. Sci. Comput (SISC) 25(4), 1429–1447 (2004)

    Article  MathSciNet  Google Scholar 

  18. Hömke, L., Weder, B., Binkofski, F., Amunts, K.: Lesion mapping in MRI data - an application of cytoarchitectonic probabilistic maps. In: WWW, Jülich. Second Vogt-Brodmann Symposium (2004), http://www.am.uni-duesseldorf.de/~hoemke/posters/lesionmapping.pdf

  19. Weder, B., Amunts, K., Hömke, L., Mohlberg, H., Bönig, L., Fretz, C., Binkofski, F.: Lesion analysis in high-resolution MR-images of patients with unilateral tactile agnosia using cytoarchitectonic mapping. In: Presented at the 10th Annual metting of the Organization for Human Brain Mapping, Budapest, June 13-17 (2004)

    Google Scholar 

  20. Keeling, S., Ring, W.: Medical image registration and interpolation by optical flow with maximal rigidity. Journal of Mathematical Imaging and Vision JMIV (to appear)

    Google Scholar 

  21. Saad, Y.: Iterative methods for sparse linear systems (2000)

    Google Scholar 

  22. Van Loan, C.F.: Computational Frameworks for the Fourier Transform. Frontiers in Applied Mathematics, vol. 10. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Henn, S., Hömke, L., Witsch, K. (2004). Lesion Preserving Image Registration with Applications to Human Brains. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics