Skip to main content

Snake-Aided Automatic Organ Delineation

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

  • 2050 Accesses

Abstract

This paper presents a knowledge-based image segmentation tool for organ delineation in CT (Computed Tomography) images. The noise and low contrast make the detection difficult. Therefore in this method, radial search, noise reduction method and post-processing algorithm have been implemented to improve the quality of contour detection. Three edge detection algorithms have been used and after detection several optimization methods have been employed to get the accurate contour from three detected contours. Finally to achieve higher accuracy of detection, active contour model (ACM), snake, has been used after the contour detected by previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Haas, O.C.L.: Radiotherapy Treatment Planning: New System Approaches. Advances in Industrial Control Monograph, p. 220. Springer, London (1999) ISBN 1-85233-063-5

    Google Scholar 

  2. Meinzer, H.P., Thorn, M., Vetter, M., Hassenpflug, P., Wolf, I.: Medical imaging: examples of clinical applications. ISPRS Journal of Photogrammetry & Remote Sensing 56, 311–325 (2002)

    Article  Google Scholar 

  3. Bueno, M.G.: Computer Aided Segmentation of Anatomical Structures in Computed Tomography Images, PhD thesis, Coventry University (1998)

    Google Scholar 

  4. Van den Berge, D.L., Ridder, M.D., Storme, G.A.: Imaging in radiotherapy. European Journal of Radiology 34, 41–48 (2000)

    Article  Google Scholar 

  5. Vickers, J.P., Burnham, K.J., Dil, A., Haas, O.C.L., Mills, J.A.: Knowledge-Based Organ Segmentation in Low Contrast Medical Computed Tomography Images. In: Bubnicki, Z., Grzech, A. (eds.) Proc 14th Int. Conf. On Systems Science, Wroclaw (Pol), vol. 3, pp. 381–388 (2001)

    Google Scholar 

  6. Gonzalez, R.C., Woods, R.C.: Digital Image Processing. Addison-Wesley Publishing Company, Inc., Reading (1992)

    Google Scholar 

  7. Milios, E., Petrakis, E.: Shape Retrieval Based on Dynamic Programming. IEEE transactions on Image Processing, Special Issue on Image and Video Processing for Digital Libraries 9(1), 141–147 (2000)

    Google Scholar 

  8. Amini, A., Weymouth, T.E., Jain, R.C.: Using Dynamic Programming for Solving Variational Problems in Vision. IEEE transactions Pattern Analysis and Machine Intelligence 12(9) (1990)

    Google Scholar 

  9. Kang, D.J., Kim, C.Y., Seo, Y.S.: A Fast and Stable Method for Detecting and Tracking Medical Organs in MRI Sequences. IEICE Trans. Inf. & Syst. E82-D(2), 497–499 (1999)

    Google Scholar 

  10. Kass, M., Witkin, A., Terzopoulos, D.: Snake: Active Contour Models. International Journal of Computer Vision, 321–331 (1988)

    Google Scholar 

  11. Cohen, L.D.: On Active Contour Models and Balloons. CVGIP: Image Understanding 53(2), 211–218 (1991)

    Article  MATH  Google Scholar 

  12. Xu, C., Prince, J.L.: Snakes, Shapes, and Gradient Vector Flow. IEEE transactions on Image Processing, 359–369 (1998)

    Google Scholar 

  13. Han, C.Y., Lin, K.N., Wee, W.G.: Knowledge-Based Image Analysis for Automated Boundary Extraction of Transesophageal Echocardiographic Left-Ventricular Images. IEEE transactions on Medical Imaging 10(4), 602–610 (1991)

    Article  Google Scholar 

  14. Ruiz, E.E.S., Fairhurst, M.C.: Improved approach to boundary location in twodimentional echocardiographic images. IEE Proc.-Vis. Image Signal Process 142(3), 121–127 (1995)

    Article  Google Scholar 

  15. Xu, W., Amin, S.A., Haas, O.C.L., Burnham, K.J., Mills, J.A.: Contour detection by using radial searching for CT images. In: Proc of the 4th Annual IEEE Conf. on Information Technology Applications in Biomedicine, UK, pp. 346–349 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, W., Amin, S.A., Haas, O.C.L., Burnham, K.J., Mills, J.A. (2004). Snake-Aided Automatic Organ Delineation. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics