Abstract
Quality assurance programs of today’s car manufacturers show increasing demand for automated visual inspection tasks. A typical example is just-in-time checking of assemblies along production lines. Since high throughput must be achieved, object recognition and pose estimation heavily rely on offline preprocessing stages of available CAD data. In this paper, we propose a complete, universal framework for CAD model feature extraction and entropy index based viewpoint selection that is developed in cooperation with a major german car manufacturer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Araújo, H., Carceroni, H.L., Brown, C.M.: A fully projective formulation to improve the accuracy of Lowe’s pose-estimation algorithm. Computer Vision and Image Understanding 70(2), 227–238 (1998)
Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley series in telecommunications. Wiley-Interscience, Chichester (1991)
Friedman, J.H., Tukey, J.W.: A projection pursuit algorithm for exploratory data analysis. IEEE Trans. on Computers C-23(9), 881–889 (1974)
Kettner, L., Welzl, E.: Contour edge analysis for polyhedron projection. In: Geometric Modelling: Theory and Practice, pp. 379–394. Springer, Heidelberg (1997)
Khawaja, K., Maciejewski, A., Tretter, D., Bouman, C.: A Multiscale Assembly Inspection Algorithm. IEEE Robotics & Automation Magazine 3(2), 15–22 (1996)
Kölzow, T.: System zur Klassifikation und Lokalisation von 3D-Objekten durch Anpassung vereinheitlichter Merkmale in Bildfolgen. PhD thesis, Bielefeld University (2002) (in German)
Lowe, D.G.: Fitting parameterized three-dimensional models to images. IEEE Trans. on Pattern Analysis and Machine Intelligence 13(5), 441–450 (1991)
Miura, J., Ikeuchi, K.: Task planning of assembly of flexible objects and vision-based verification. Robotica 16, 297–307 (1998)
Noble, J.: From inspection to process understanding and monitoring: a view on computer vision in manufacturing. Image and Vision Computing 13(3), 197–214 (1995)
Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision 37(2), 151–172 (2000)
Shi, J., Tomasi, C.: Good features to track. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 593–600 (1994)
Singh, S.: PRISM - a novel framework for pattern recognition. Pattern Analysis and Applications 6(2), 134–149 (2003)
Vázquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Viewpoint selection using viewpoint entropy. In: Ertl, T., Girod, B., Greiner, G., Niemann, H., Seidel, H.P. (eds.) Vision, Modeling, and Visualization 2001, pp. 273–280 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stößel, D., Hanheide, M., Sagerer, G., Krüger, L., Ellenrieder, M. (2004). Feature and Viewpoint Selection for Industrial Car Assembly. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_65
Download citation
DOI: https://doi.org/10.1007/978-3-540-28649-3_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22945-2
Online ISBN: 978-3-540-28649-3
eBook Packages: Springer Book Archive