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Abstract. Dyed barley cells in microscope colour images of biological
experiments are analysed for the occurrence of haustoria of the powdery
mildew fungus by a fully automated screening system. The region of
interest in the images is found by applying Canny’s edge detector to
the hue channel of the HSV colour space. Potential haustoria regions
are extracted in RGB colour space by an adaptive Gaussian mixture
classifier based on the Expectation Maximisation (EM) algorithm. Since
the classes cell and haustorium are at very close quarters, their correct
separation is a crucial part and needs a constraining mechanism which
ties the EM algorithm to its initialisation data to prevent a too large
deviation from it.

1 Introduction

Automating the screening and the analysis of biological experiments is a chal-
lenging research area in the field of bioinformatics and engineering. This paper
is related to a project where resistance mechanisms of crop plants against the
powdery mildew fungus are studied from the genetical point of view. In the exper-
iments, young barley leaves are bombarded with DNA-coated tungsten particles
to “switch on or off” desired genes in cells. For analysis purposes, an additional
reporter gene1 is expressed in cells that were hit by a particle. This dyes the af-
fected genetically transformed cells greenish blue and allows their identification
by bright field microscopy [8]. The task is to evaluate the susceptibility of the
genetically transformed cells to the powdery mildew fungus under the impact
of different test genes. A successful penetration of the fungus into the cell is
indicated by the development of a haustorium – a dark object with “fingers”
that is located between the cell wall and the cell membrane and feeds the fungus
by leaching the cell. These objects have to be counted in an automatic analysis
procedure.

Since there are many genes to be considered for a potential resistance of the
plant against pathogens, a big number of experiments has to be performed to
1 β-glucuronidase (GUS) reporter gene



Fig. 1. Cutouts of microscope images of barley cells. The dyed cells are genetically
transformed, both cells contain two haustoria of the powdery mildew fungus. At coarse
scales, Canny’s edge detector marks these cells by a closed boundary.
Color version available via http://bic-gh.ipk-gatersleben.de/wgrp/mue/prj03.php

attain a sufficient statistical confidence. Therefore, an automated image acqui-
sition system and an automatic analysis procedure is needed. Manual screening
is a tedious, subjective and time-consuming task that cannot be handled by
laboratory assistants due to that huge amount of data. For an automatic im-
age acquisition, the microscope slides are mounted on an x-y table which scans
a number of preparations fully automatically under the control of a computer,
e.g., overnight. Now, finding genetically transformed cells and therein assessing
the development status of the haustoria without human interaction is the task
and the challenge of the analysis procedure.

This paper describes a method to automatically identify suspicious objects,
i.e., parts of genetically transformed cells that may be a haustorium. It is or-
ganised as follows: Section 2 introduces the properties of the image material and
explains how the regions of interest, i.e., genetically transformed cells, are found
in the images. Afterwards, Section 3 describes the identification of potential
haustoria via the Expectation Maximisation (EM) algorithm, before Section 4
concludes the paper.



2 Preprocessing of the Image Material

Figure 1 shows two typical cutouts of microscope images, both containing one
dyed genetically transformed cell with two haustoria of the powdery mildew
fungus inside. By default, the microscope camera produces images of 2600×2060
pixel in 24-bit colour.

In [5] we have shown that the dyed genetically transformed cells can be
reliably detected by applying Canny’s edge detector [2] to the hue channel of
the HSV colour space, rather than performing multi-dimensional edge detection
in the RGB colour space or using histogram-based methods. At a coarse scale
Canny’s algorithm marks the dyed cells by a closed boundary. The bounding box
of these closed contours will be the input of the further haustorium detection
procedure. Unfortunately, the haustoria stand out scarcely from the dyed cell,
and there is no such straightforward colour space transformation to separate
them as good as the dyed cells from the remaining cell tissue. Therefore, we
stay in the RGB colour space, which contains the entire image information, and
show what haustorium detection results can be achieved by pixel classification
methods.

3 Cell Image Analysis by Clustering in Colour Space

3.1 Naive Bayes Classification

Suppose a naive Bayes classifier at first. A number of N d-dimensional data
vectors xn ∈ R

d×1 from the entire data set X ∈ R
d×N has to be classified

into K classes. If the prior (a priori) probabilities P (k) and the probability
density functions p(x|k) of the k = 1 . . . K classes are known, then the posterior
(a posteriori) probability P (k|xn) of a sample vector xn to belong to class k can
be calculated by Bayes’ rule [1] (maximum likelihood decision) according to

P (k|xn) =
P (k) p(xn|k)

K∑
j=1

P (j) p(xn|j)
. (1)

Inspecting our data in the RGB colour space, we can decompose the mixture
distribution of colours into three stretched ellipsoids, representing the three dom-
inant image matters, namely background, cell, and haustorium. Such ellipsoidal
distribution can be well modelled by the multivariate Gaussian distribution,
which is described by the mean vector μ, specifying the center point of the el-
lipsoid, and the covariance matrix Σ, which is responsible for the shape and the
orientation of the ellipsoid.

p(x|μk,Σk) =
1√

detΣk(2π)d
e− 1

2 (x−μk)T Σ−1
k (x−μk) (2)

See Figure 2 for the segmentation results of this naive Bayes classification
where the parameters of the classes were taken from typical samples. In the upper



Fig. 2. Segmentation by a naive Bayes pixel-classification in RGB colour space mod-
elling the classes by multivariate Gaussians.

images, the pixel-labels are depicted in a soft-output manner, i.e., the vector of
the posterior probabilities [P (k = 3|x), P (k = 2|x), P (k = 1|x)]T is assigned
to the RGB value of each pixel, making the saturation of the colour follow the
reliability of the estimate. The lower figures show both the clusters in RGB
colour space as well as the principal components (eigenvectors) of each cluster.
As can be seen, simply assigning parameters from typical images for the three
classes and performing a naive Bayes classification does not provide satisfactory
results because the parameter set will never match the actual scenario sufficiently
due to some inevitable variations in colour and illumination in the image data.
Therefore, some “self adaptation” of the classification algorithm to the actual
data is needed to improve the classification results.

3.2 EM Classification Using the Complete Data Set

The Expectation Maximisation (EM) algorithm [4,7] is known to be a powerful
clustering technique for mixture distributions where the parameters of the un-
derlying probability density functions are adapted in an iterative way, trying to
yield the best recovery of the mixture components. Its clustering performance
depends on two major conditions: the precision the actual data is represented by
the data model, as well as the initialisation parameters, because it can converge
to local extrema instead of finding the global optimum. Such clustering methods
are used for many different applications in image processing, e.g., skin detec-
tion [6]. In [3] an advanced image querying system is described which applies
the EM algorithm to an eight-dimensional space of colour, texture, and position
features, where the number of mixture components is chosen following the Min-
imum Description Length (MDL) principle. Fortunately, we know the number



Fig. 3. Segmentation results of the EM algorithm when iterating on the entire data
set of RGB colour vectors.

of mixture components in feature space very well due to the speciality of our
image material. Furthermore, colour appears as the dominant feature, therefore
we can ignore texture and position features and use the RGB colour information
as the only feature.

We initialise the a priori probability of the classes with P (k) = 1/K = 1/3
(since we do not know P (k) in advance) and perform a data-driven initialisation
of the mean vectors and covariance matrices of the classes from exemplary, hand-
segmented image parts, as already done for the naive Bayes classification. Then,
the iteration of the EM algorithm is run in the following manner:

The probability (at iteration step t) of each data vector xn to belong to class
k is calculated (expectation step) by

P t(k|xn) =
P t(k) p(xn|μt

k,Σt
k)

K∑
j=1

P t(j) p(xn|μt
j ,Σ

t
j)

. (3)

A new parameter set for the iteration step t+1 containing the prior probabil-
ities, mean vectors and covariance matrices for each class is calculated according
to (maximisation step)

P t+1(k) =
1
N

N∑

n=1

P t(k|xn) (4)

μt+1
k =

1
NP t+1(k)

N∑

n=1

P t(k|xn) xn (5)



Fig. 4. Segmentation results of the EM algorithm iterating data vectors that were
estimated by a reliability of at least Rmin = 0.65.

Σt+1
k =

1
NP t+1(k)

N∑

n=1

P t(k|xn) (xn − μt+1
k ) (xn − μt+1

k )T . (6)

The algorithm is terminated when the labelling in the segmented image does
not change anymore.

As can be seen in Figure 3, the clustering separates the background and cell
class very well but it suffers from an overestimation of the haustorium class.
This solution is optimal from the EM point of view, but it is not our desired
result for an appropriate segmentation. In spite of different initial parameters,
the EM algorithm tends towards bad results of the same manner. Incrementing
the model order, i.e., providing more classes generally does not yield more solid
results, especially for the right hand image.

3.3 Constraining the EM by Reliability Information

A straightforward solution to achieve appropriate segmentation results is found
in constraining the algorithm to the initial parameter set, which is known quite
well in our particular case. Using the complete data set (all image pixels)
makes a large number of cell labels to turn over into haustorium labels dur-
ing the iterations. Iterating on reliably estimated data vectors only (instead
on the entire data set) prevents the algorithm from deviating too much from
its initial parameters. The classification reliability of each sample is given by
R = maxk{P t(k|xn)} ∈ [1/K . . . 1] and is inherently calculated in each itera-
tion.



Table 1. Tapering the subset of data samples which the EM uses for iteration by a
stepwise variation of the reliability parameter Rmin.

In the following, we restrict the data set, which the EM operates on, to data
samples that were classified with a reliability of at least Rmin. Note that the
lower bound of this parameter depends on the number of classes and that an
appropriate parameter value has to be found empirically by a visual inspection
of the segmentation results. See Table 1 for a test series of our particular segmen-
tation problem. It can be observed that there is a significant changeover between
Rmin = 0.50 . . . 0.60. Choosing Rmin larger than 0.75, we observed convergence
problems of the algorithm for the right hand image, where the algorithm os-
cillated harmonically between two states instead of terminating. This can be
explained by the recurrent changing of the considered data set parts during the
iterations and needs further attention.

Figure 4 shows the detailed segmentation results for Rmin = 0.65. Despite
some misclassified objects in the haustorium class it shows the haustoria quite
good — with this method we are able to automatically identify suspicious ob-
jects, i.e., potential haustoria. Now, further analysis on the detected objects is
needed to distinguish haustoria from discolourations or other parts inside the
cell that have a similar colour, e.g., the cell nucleus. As a next step, therefore
these image parts have to be further evaluated, taking form parameters of the
detected objects into account, e.g., by detecting the “fingers” of the haustoria.
This will be examined in the near future and is out of the scope of this paper.

This paper is accompanied by a continuative web site of the presented results.
Visit http://bic-gh.ipk-gatersleben.de/wgrp/mue/prj03.php for a more
detailed compilation of exemplary cell images and their clustering results.



4 Conclusions

The Expectation Maximisation (EM) algorithm is applied in the RGB colour
space to perform a segmentation of microscope colour images for the identifi-
cation of small objects which stand out scarcely from the region of interest. To
provide satisfactory results, it is shown that this special problem needs a con-
straint mechanism which ties the EM algorithm to its initialisation parameters
and forbids a too large deviation from it. This constraint mechanism is realised
by dynamically restricting the data set the algorithm operates on to a reliably
estimated part only. The mechanism is parametrised by a reliability threshold
parameter which has to be determined empirically. This technique prevents a
defection of the desired segmentation and provides good retrieval results of sus-
picious objects via an automatic analysis procedure.
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