Skip to main content

Detection and Classification of Gateways for the Acquisition of Structured Robot Maps

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

The automatic acquisition of structured object maps requires sophisticated perceptual mechanisms that enable the robot to recognize the objects that are to be stored in the robot map. This paper investigates a particular object recognition problem: the automatic detection and classification of gateways in office environments based on laser range data. We will propose, discuss, and empirically evaluate a sensor model for crossing gateways and different approaches to gateway classification including simple maximum classifiers and HMM-based classification of observation sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beeson, P., MacMahon, M., Modayil, J., Provost, J., Savelli, F., Kuipers, B.: Exploiting local perceptual models for topological map-building. In: IJCAI 2003 Workshop RUR 2003 (2003)

    Google Scholar 

  2. Burgard, W., Cremers, A.B., Fox, D., Hähnel, D., Lakemeyer, G., Schulz, D., Steiner, W., Thrun, S.: Experiences with an interactive museum tour-guide robot. Artificial Intelligence 114(1-2) (2000)

    Google Scholar 

  3. Chown, E.: Gateways: An approach to parsing spatial domains. In: ICML 2000 Workshop on Machine Learning of Spatial Knowledge (2000)

    Google Scholar 

  4. Gutmann, J.-S., Schröter, D., Beetz, M.: RG Mapping: Learning Compact and Structured 2D Line Maps of Indoor Environments. In: Proc. of 11th IEEE ROMAN 2002, Berlin/Germany (2002)

    Google Scholar 

  5. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. JohnWiley & Sons, Inc., NewYork (2001)

    MATH  Google Scholar 

  6. Gutmann, J.-S.: Robuste Navigation autonomer mobiler Systeme (in German). Akademische Verlagsgesellschaft Aka, Berlin, Doctoral Thesis University of Freiburg (2000)

    Google Scholar 

  7. Haehnel, D., Fox, D., Burgard, W., Thrun, S.: A highly efficient FastSLAM algorithm for generating cyclic maps of large-scale environments from raw laser range measurements. In: Proc. of IEEE IROS, Las Vegas/USA (2003)

    Google Scholar 

  8. Kortenkamp, D.: Cognitive Maps for mobile robots: A representation for mapping and navigation. PhD thesis, University of Michigan (1993)

    Google Scholar 

  9. Rabiner, L.R., Juang, B.H.: An introduction to hidden Markov models. IEEE ASSP Magazine, 4–15 (January 1986)

    Google Scholar 

  10. Schröter, D., Beetz, M.: Acquiring Modells of Rectangular Objects for Robot Maps. In: Proc. of IEEE ICRA, New Orleans/USA (2004)

    Google Scholar 

  11. Thrun, S.: Robotic mapping: A survey. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millenium, Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schröter, D., Weber, T., Beetz, M., Radig, B. (2004). Detection and Classification of Gateways for the Acquisition of Structured Robot Maps. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics