Skip to main content

Efficient Approximations for Support Vector Machines in Object Detection

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

We present a new approximation scheme for support vector decision functions in object detection. In the present approach we are building on an existing algorithm where the set of support vectors is replaced by a smaller so-called reduced set of synthetic points. Instead of finding the reduced set via unconstrained optimization, we impose a structural constraint on the synthetic vectors such that the resulting approximation can be evaluated via separable filters. Applications that require scanning an entire image can benefit from this representation: when using separable filters, the average computational complexity for evaluating a reduced set vector on a test patch of size h× w drops from O(h· w) to O(h+w). We show experimental results on handwritten digits and face detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bakir, G.H., Gretton, A., Franz, M.O., Schölkopf, B.: Multivariate regression via stiefel manifold constraints. In: Proc. of the Pattern Recognition Symposium, DAGM (2004)

    Google Scholar 

  2. Burges, C.J.C.: Simplified support vector decision rules. In: Saitta, L. (ed.) Proceedings of the 13th International Conference on Machine Learning, San Mateo, CA, pp. 71–77. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  3. Burges, C.J.C., Schölkopf, B.: Improving the accuracy and speed of support vector learning machines. In: Mozer, M., Jordan, M., Petsche, T. (eds.) Advances in Neural Information Processing Systems 9, pp. 375–381. MIT Press, Cambridge (1997)

    Google Scholar 

  4. Heisele, B., Poggio, T., Pontil, M.: Face detection in still gray images. Technical Report 1687, MIT A.I. Lab (2000)

    Google Scholar 

  5. Osuna, E., Freund, R., Girosi, F.: Training support vector machines: An application to face detection. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, pp. 130–136 (1997)

    Google Scholar 

  6. Romdhani, S., Torr, P., Schölkopf, B., Blake, A.: Fast face detection, using a sequential reduced support vector evaluation. In: Proceedings of the International Conference on Computer Vision (2001)

    Google Scholar 

  7. Rowley, H., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 23–38 (1998)

    Article  Google Scholar 

  8. Schneiderman, H.: A statistical approach to 3d object detection applied to faces and cars. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (2000)

    Google Scholar 

  9. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  10. Steinwart, I.: Sparseness of support vector machines—some asymptotically sharp bounds. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16, MIT Press, Cambridge (2004)

    Google Scholar 

  11. Sung, K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (1998)

    Google Scholar 

  12. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kienzle, W., Bakır, G., Franz, M., Schölkopf, B. (2004). Efficient Approximations for Support Vector Machines in Object Detection. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics