Abstract
We present a new approximation scheme for support vector decision functions in object detection. In the present approach we are building on an existing algorithm where the set of support vectors is replaced by a smaller so-called reduced set of synthetic points. Instead of finding the reduced set via unconstrained optimization, we impose a structural constraint on the synthetic vectors such that the resulting approximation can be evaluated via separable filters. Applications that require scanning an entire image can benefit from this representation: when using separable filters, the average computational complexity for evaluating a reduced set vector on a test patch of size h× w drops from O(h· w) to O(h+w). We show experimental results on handwritten digits and face detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bakir, G.H., Gretton, A., Franz, M.O., Schölkopf, B.: Multivariate regression via stiefel manifold constraints. In: Proc. of the Pattern Recognition Symposium, DAGM (2004)
Burges, C.J.C.: Simplified support vector decision rules. In: Saitta, L. (ed.) Proceedings of the 13th International Conference on Machine Learning, San Mateo, CA, pp. 71–77. Morgan Kaufmann, San Francisco (1996)
Burges, C.J.C., Schölkopf, B.: Improving the accuracy and speed of support vector learning machines. In: Mozer, M., Jordan, M., Petsche, T. (eds.) Advances in Neural Information Processing Systems 9, pp. 375–381. MIT Press, Cambridge (1997)
Heisele, B., Poggio, T., Pontil, M.: Face detection in still gray images. Technical Report 1687, MIT A.I. Lab (2000)
Osuna, E., Freund, R., Girosi, F.: Training support vector machines: An application to face detection. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, pp. 130–136 (1997)
Romdhani, S., Torr, P., Schölkopf, B., Blake, A.: Fast face detection, using a sequential reduced support vector evaluation. In: Proceedings of the International Conference on Computer Vision (2001)
Rowley, H., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 23–38 (1998)
Schneiderman, H.: A statistical approach to 3d object detection applied to faces and cars. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (2000)
Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)
Steinwart, I.: Sparseness of support vector machines—some asymptotically sharp bounds. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16, MIT Press, Cambridge (2004)
Sung, K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (1998)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kienzle, W., Bakır, G., Franz, M., Schölkopf, B. (2004). Efficient Approximations for Support Vector Machines in Object Detection. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-28649-3_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22945-2
Online ISBN: 978-3-540-28649-3
eBook Packages: Springer Book Archive