Skip to main content

Visualisation of Distributions and Clusters Using ViSOMs on Gene Expression Data

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2004 (IDEAL 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3177))

  • 1347 Accesses

Abstract

Microarray datasets are often too large to visualise due to the high dimensionality. The self-organising map has been found useful to analyse massive complex datasets. It can be used for clustering, visualisation, and dimensionality reduction. However for visualisation purposes the SOM uses colouring schemes as a means of marking cluster boundaries on the map. The distribution of the data and the cluster structures are not faithfully portrayed. In this paper we applied the recently proposed visualisation induced Self-Organising Map (ViSOM), which directly preserves the inter-point distances of the input data on the map as well as the topology. The ViSOM algorithm regularizes the neurons so that the distances between them are proportional in both the data space and the map space. The results are similar to the Sammon mappings but with improved details on gene distributions and the flexibility to nonlinearity. The method is more suitable for larger datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cho, R., et al.: A Genome-Wide Transcriptional Analysis of the Mitotic Cell Cycle. Molecular Cell 2, 65–73 (1998)

    Article  Google Scholar 

  2. Chu, S., et al.: The transcriptional program of sporulation in budding yeast. Science 282, 699–705 (1998)

    Article  Google Scholar 

  3. Cox, T.F., Cox, M.A.A.: Multidimensional scaling. Chapman and Hall, London (1994)

    MATH  Google Scholar 

  4. Karhunen, J., Joutsensalo, J.: Generalisation of principal component analysis, optimisation problems, and neural networks. Neural Networks 8, 549–562 (1995)

    Article  Google Scholar 

  5. Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer, Heidelberg (1995)

    Google Scholar 

  6. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AICHE Journal 37, 233–243 (1991)

    Article  Google Scholar 

  7. Raychaudhuri, S., et al.: Principal Components Analysis to Summarize Microarray Experiments- Application to Sporulation Time Series. In: Pac. Symp. Biocomput, pp. 455–466 (2000)

    Google Scholar 

  8. Ripley, B.D.: Pattern recognition and neural network. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  9. Sammon, J.W.: A nonlinear mapping for data structure. IEEE Transactions on Computer 18, 401–409 (1969)

    Article  Google Scholar 

  10. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernal eigenvalue problem. Neural Computation 10, 1299–1319 (1998)

    Article  Google Scholar 

  11. Spellman, P.T., et al.: Comprehensive Identification of Cell Cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridisation. Molecular Biology of the Cell 9, 3273–3297 (1998)

    Google Scholar 

  12. Torkkola, K., et al.: Self-organizing maps in mining gene expression data. Information Sciences 139, 79–96 (2001)

    Article  MATH  Google Scholar 

  13. Törönen, P., et al.: Analysis of gene expression data using self-organising maps. FEBS Letters 451, 142–146 (1999)

    Article  Google Scholar 

  14. Ultsch, A.: Self-organizing neural networks for visualization and classification. In: Opitz, O., Lausen, B., Klar, R. (eds.) Information and classification, pp. 864–867 (1993)

    Google Scholar 

  15. Wang, et al.: Clustering of the SOM easily reveals distinct gene expression patterns: results of a reanalysis of lymphoma study. Bioinformatics 3, 36 (2002)

    Article  Google Scholar 

  16. Wen, X., et al.: Large-Scale Temporal Gene Expression Mapping of CNS Development. Proc Natl Acad Sci USA 95, 334–339 (1998)

    Article  Google Scholar 

  17. Yin, H.: Visualisation induced SOM (ViSOM). In: Allinson, N., Yin, H., Allinson, L., Slack, (̇eds.) Advances is self-organising maps, Proceedings WSOM 2001, pp. 81–88. Springer, London (2001)

    Google Scholar 

  18. Yin, H.: Data visualisation and manifold mapping using the ViSOM. Neural Networks 15, 1005–1016 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sarvesvaran, S., Yin, H. (2004). Visualisation of Distributions and Clusters Using ViSOMs on Gene Expression Data. In: Yang, Z.R., Yin, H., Everson, R.M. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2004. IDEAL 2004. Lecture Notes in Computer Science, vol 3177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28651-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28651-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22881-3

  • Online ISBN: 978-3-540-28651-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics