Abstract
In this paper, we propose a framework, called XAR-Miner, for mining ARs from XML documents efficiently and effectively. In XAR-Miner, raw XML data are first transform ed to either an Indexed Content Tree (IX-tree) or M ulti-relational databases (Multi-DB), depending on the size of XML document and memory constraint of the system, for efficient data selection in the AR mining. Concepts that are relevant to the AR mining task are generalized to produce generalized meta-patterns. A suitable metric is devised for measuring the degree of concept generalization in order to prevent under-generalization or over-generalization. Resultant generalized meta-patterns are used to generate large ARs that meet the support and confidence levels. An efficient AR mining algorithm is also presented based on candidate AR generation in the hierarchy of generalized meta-patterns. The experiments show that XAR-Miner is more efficient in performing a large number of AR mining tasks from XML docume nts than the state-of-the-art method of repetitively scanning through XML documents in order to perform each of the mining tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases. In: Proceedings of VLDB 1994, September 1994, pp. 487–499. Santiago de Chile, Chile (1994)
Amir, A., Feldman, R., Kashi, R.: A New and Versatile Method for Association Generation. Information Systems 22(6/7), 333–347 (1997)
Braga, D., Campi, A., Klemettinen, M., Lanzi, P.: Mining Association Rules from XML Data. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. LNCS, vol. 2454, pp. 21–30. Springer, Heidelberg (2002)
Feldman, R., Hirsh, H.: Mining Associations in the Presence of Background Knowledge. In: Proceedings of the 2nd International Conference on Knowledge Discovery in Databases, Portland, Oregon, USA, pp. 343–346 (1996)
Han, J., Kamber, M.: Data Mining Concepts and Techniques. Morgan Kaufmann, San Francisco (2000)
IBM XML Generator, http://www.alphaworks.ibm.com/tech/xmlgenerator
Imielinski, T., Virmani, A.: MSQL: A Query Language for Database Mining. Data Mining and Knowledge Discovery 3(4), 373–408 (1999)
Meo, R., Psaila, G., Ceri, S.: A New Operator for Mining Association Rules. In: Proceeding of VLDB 1996, Bombay, India, September 1996, pp. 122–133 (1996)
Meo, R., Psaila, G., Ceri, S.: A Tightly-coupled Architecture for Data Mining. In: Proceedings of ICDE 1998, Orlando, FL, USA, February 1998, pp. 316–323 (1998)
PMML 2.0: Predicative Model Makeup Language (2000), Available at http://www.dmg.org
Resnik, P.: Semantic Similarity in a Taxonomy: An Information-based Measure as its Application to Problems of Ambiguity in Natural Language. Journal of Artificial Intelligence Research 11, 95–130 (1999)
Singh, L., Chen, B., Haight, R., Scheuermann, P.: An Algorithm for Constrained Association Rule Mining in Semi-structured Data. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 148–158. Springer, Heidelberg (1999)
Singh, L., Scheuermann, P., Chen, B.: Generating Association Rules from Semistructured Documents Using an Extended Concept Hierarchy. In: Proceedings of CIKM 1997, Las Vegas, Nevada, November 1997, pp. 193–200 (1997)
Psaila, G., Lanzi, P.L.: Hierarchy-based Mining of Association Rules in Data Warehouses. In: Proceedings of ACM SAC 2000, Como, Italy (2000)
Feng, L., Dillon, T.S., Weigand, H., Chang, E.: An XML-Enabled Association Rule Framework. In: MaÅ™Ãk, V., Å tÄ›pánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 88–97. Springer, Heidelberg (2003)
Wan, W.W., Dobbie, G.: Extracting association rules from XML documents using XQuery. In: Proceedings of WIDM 2003, New Orleans, Louisiana, USA, pp. 94–97 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, J., Ling, T.W., Bruckner, R.M., Tjoa, A.M., Liu, H. (2004). On Efficient and Effective Association Rule Mining from XML Data. In: Galindo, F., Takizawa, M., Traunmüller, R. (eds) Database and Expert Systems Applications. DEXA 2004. Lecture Notes in Computer Science, vol 3180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30075-5_48
Download citation
DOI: https://doi.org/10.1007/978-3-540-30075-5_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22936-0
Online ISBN: 978-3-540-30075-5
eBook Packages: Springer Book Archive