Skip to main content

Learning an Approximation to Inductive Logic Programming Clause Evaluation

  • Conference paper
Inductive Logic Programming (ILP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3194))

Included in the following conference series:

Abstract

One challenge faced by many Inductive Logic Programming (ILP) systems is poor scalability to problems with large search spaces and many examples. Randomized search methods such as stochastic clause selection (SCS) and rapid random restarts (RRR) have proven somewhat successful at addressing this weakness. However, on datasets where hypothesis evaluation is computationally expensive, even these algorithms may take unreasonably long to discover a good solution. We attempt to improve the performance of these algorithms on datasets by learning an approximation to ILP hypothesis evaluation. We generate a small set of hypotheses, uniformly sampled from the space of candidate hypotheses, and evaluate this set on actual data. These hypotheses and their corresponding evaluation scores serve as training data for learning an approximate hypothesis evaluator. We outline three techniques that make use of the trained evaluation-function approximator in order to reduce the computation required during an ILP hypothesis search. We test our approximate clause evaluation algorithm using the popular ILP system Aleph. Empirical results are provided on several benchmark datasets. We show that the clause evaluation function can be accurately approximated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lavrac, N., Dzeroski, S.: Inductive Logic Programming. Ellis Horwood (1994)

    Google Scholar 

  2. King, R., Muggleton, S., Sternberg, M.: Predicting protein secondary structure using inductive logic programming. Protein Engineering 5, 647–657 (1992)

    Article  Google Scholar 

  3. Srinivasan, A., King, R., Muggleton, S., Sternberg, M.: The predictive toxicology evaluation challenge. In: Proc. 15th Intl. Joint Conf. on Artificial Intelligence, pp. 1–6 (1997)

    Google Scholar 

  4. Dolsak, B., Muggleton, S.: The application of ILP to finite element mesh design. In: Proc. 1st Intl. Workshop on ILP, pp. 225–242 (1991)

    Google Scholar 

  5. Zelle, J., Mooney, R.: Learning semantic grammars with constructive inductive logic programming. In: Proc. 11th Natl. Conf. on Artificial Intelligence, pp. 817–822 (1993)

    Google Scholar 

  6. Bratko, I., Grobelnik, M.: Inductive learning applied to program construction and verification. In: Proc. 3rd Intl. Workshop on Inductive Logic Programming, pp. 169–182 (1993)

    Google Scholar 

  7. Nienhuys-Cheng, S., de Wolf, R.: Foundations of Inductive Logic Programming. Springer, Heidelberg (1997)

    Google Scholar 

  8. Schmidt-Schauss, M.: Implication of clauses is undecidable. Theoretical Computer Science 59, 287–296 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Quinlan, J.: Learning logical definitions from relations. Machine Learning, 239–266 (1990)

    Google Scholar 

  10. Muggleton, S., Feng, C.: Efficient induction of logic programs. In: Proc. 1st Conf. on Algorithmic Learning Theory, pp. 368–381 (1990)

    Google Scholar 

  11. Muggleton, S.: Inverse Entailment and Progol. New Generation Computing 13, 245–286 (1995)

    Article  Google Scholar 

  12. Srinivasan, A.: A study of two probabilistic methods for searching large spaces with ILP. Tech. Report PRG-TR-16-00. Oxford Univ. Computing Lab (2000)

    Google Scholar 

  13. Zelezny, F., Srinivasan, A., Page, D.: Lattice-search runtime distributions may be heavy-tailed. In: Proc. 12th Intl. Conf. on Inductive Logic Programming,pp. 333-345 (2002)

    Google Scholar 

  14. Giordana, L.: Saitta & F. Zini, Learning disjunctive concepts by means of genetic algorithms. In: Proc. 11th Intl. Conf. on Machine Learning ,pp. 96-104 (1994)

    Google Scholar 

  15. Hanschke, P., Wurtz, J.: Satisfiability of the smallest binary program. Info. Proc. Letters 496, 237–241 (1993)

    Article  MathSciNet  Google Scholar 

  16. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Computing Surveys 33, 374–425 (2001)

    Article  Google Scholar 

  17. Rückert, U., Kramer, S.: Stochastic local search in k-term DNF learning. In: Proc. 20th Intl. Conf. on Machine Learning,pp. 648-655 (2003)

    Google Scholar 

  18. Blockeel, H., Dehasp, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele, H.: Improving the efficiency of inductive logic programming through the use of query packs. J. AI Research 16, 135–166 (2002)

    MATH  Google Scholar 

  19. Santos Costa, V., Srinivasan, A., Camacho, R., Blockeel, H., Demoen, B., Janssens, G., Struyf, J., Van de casteele, H., Van Laer, W.: Query transformations for improving the efficiency of ILP systems. J. Machine Learning Research 4, 465–491 (2003)

    Article  Google Scholar 

  20. Srinivasan, A.: A study of two sampling methods for analysing large datasets with ILP. Data Mining and Knowledge Discovery 3, 95–123 (1999)

    Article  Google Scholar 

  21. Sebag, M., Rouveirol, C.: Resource-bounded relational reasoning: induction and deduction through stochastic matching. Machine Learning 38, 41–62 (2000)

    Article  MATH  Google Scholar 

  22. Maloberti, J., Sebag, M.: Theta-subsumption in a constraint satisfaction perspective. In: Proc. 11th Intl. Conf. on Inductive Logic Programming, pp. 164–178 (2001)

    Google Scholar 

  23. Boyan, J., Moore, A.: Learning evaluation functions to improve optimization by local search. J. Machine Learning Research 1, 77–112 (2000)

    Article  Google Scholar 

  24. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2, 359–366 (1989)

    Article  Google Scholar 

  25. Nix, D., Weigend, A.: Learning local error bars for nonlinear regression. In: Advances in Neural Information Processing Systems, MIT Press, Cambridge (1995)

    Google Scholar 

  26. Craven, M., Shavlik, J.: Extracting tree-structured representations of trained networks. In: Advances in Neural Information Processing Systems, MIT Press, Cambridge (1995)

    Google Scholar 

  27. King, R., Muggleton, S., Srinivasan, A., Sternberg, M.: Structure-activity relationships derived by machine learning. PNAS 93, 438–442 (1996)

    Article  Google Scholar 

  28. Srinivasan, A., King, R., Muggleton, S., Sternberg, M.: Carcinogenesis predictions using ILP. In: Proc. 7th Intl. Workshop on Inductive Logic Programming, pp. 273–287 (1997)

    Google Scholar 

  29. Witten, I., Frank, E.: Data Mining. Morgan Kaufmann Publishers, San Francisco (1999)

    Google Scholar 

  30. Goadrich, M., Oliphant, L., Shavlik, J.: Learning ensembles of first-order clauses for recall-precision curves: a case study in biomedical information extraction. In: Proc. 14th Intl. Conf. on Inductive Logic Programming (2004)

    Google Scholar 

  31. Botta, M., Giordana, A., Saitta, L., Sebag, M.: Relational learning as search in a critical region. J. Machine Learning Research 4, 431–463 (2003)

    Article  MathSciNet  Google Scholar 

  32. Caruana, R., Baluja, S.: Using the future to ’sort out’ the present. In: Advances in Neural Information Processing Systems, MIT Press, Cambridge (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

DiMaio, F., Shavlik, J. (2004). Learning an Approximation to Inductive Logic Programming Clause Evaluation. In: Camacho, R., King, R., Srinivasan, A. (eds) Inductive Logic Programming. ILP 2004. Lecture Notes in Computer Science(), vol 3194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30109-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30109-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22941-4

  • Online ISBN: 978-3-540-30109-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics