Abstract
In this paper we face the coverage problem in the context of learning in the hybrid language \(\mathcal{AL}\)-log. Here candidate hypotheses are represented as Datalog clauses with variables constrained by assertions in the description logic \(\mathcal{ALC}\). Regardless of the scope of induction we define coverage relations for \(\mathcal{AL}\)-log in the two logical settings of learning from implications and learning from interpretations. Also, with reference to the ILP system \(\mathcal{AL}\)-QuIn, we discuss our solutions to the algorithmic and implementation issues raised by the coverage test for the setting of characteristic induction from interpretations in \(\mathcal{AL}\)-log.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)
Berners-Lee, T.: Weaving the Web. Harper, San Francisco (1999)
Blockeel, H., De Raedt, L., Jacobs, N., Demoen, B.: Scaling Up Inductive Logic Programming by Learning from Interpretations. Data Mining and Knowledge Discovery 3, 59–93 (1999)
Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg (1990)
De Raedt, L.: Logical Settings for Concept-Learning. Artificial Intelligence 95(1), 187–201 (1997)
De Raedt, L., Ďzeroski, S.: First order jk-clausal theories are PAC-learnable. Artificial Intelligence 70, 375–392 (1994)
Di Mauro, N., Altomare, T.M., Ferilli, S., Esposito, F., Fanizzi, N.: An Exhaustive Matching Procedure for the Improvement of Learning Efficiency. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 112–129. Springer, Heidelberg (2003)
Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating Datalog and Description Logics. Journal of Intelligent Information Systems 10(3), 227–252 (1998)
Frazier, M., Page, C.D.: Learnability in inductive logic programming. In: Proceedings of the 10st National Conference on Artificial Intelligence, pp. 93–98. The AAAI Press/The MIT Press (1993)
Horrocks, I., Patel-Schneider, P.F.: A Proposal for an OWL Rules Language. In: Proc. of the 13th International World Wide Web Conference, ACM, New York (2004) (to appear)
Horrocks, P.F.: Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: The making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)
Kietz, J.-U.: Learnability of description logic programs. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 117–132. Springer, Heidelberg (2003)
Klug, A.C.: On conjunctive queries containing inequalities. Journal of ACM 35(1), 146–160 (1988)
Levy, A.Y., Rousset, M.-C.: Combining Horn rules and description logics in CARIN. Artificial Intelligence 104, 165–209 (1998)
Lisi, F.A., Ferilli, S., Fanizzi, N.: Object Identity as Search Bias for Pattern Spaces. In: van Harmelen, F. (ed.) ECAI 2002. Proceedings of the 15th European Conference on Artificial Intelligence, pp. 375–379. IOS Press, Amsterdam (2002)
Lisi, F.A., Malerba, D.: Bridging the Gap between Horn Clausal Logic and Description Logics in Inductive Learning. In: Cappelli, A., Turini, F. (eds.) AI*IA 2003. LNCS, vol. 2829, pp. 49–60. Springer, Heidelberg (2003)
Lisi, F.A., Malerba, D.: Ideal Refinement of Descriptions in AL-log. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 215–232. Springer, Heidelberg (2003)
Lisi, F.A., Malerba, D.: Inducing Multi-Level Association Rules from Multiple Relations. Machine Learning 55, 175–210 (2004)
Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)
Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)
Papadimitriou, C.H., Yannakakis, M.: On the complexity of database queries. In: Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Tucson, Arizona, May 12-14, pp. 12–19. ACM Press, New York (1997)
Rouveirol, C., Ventos, V.: Towards Learning in CARIN-ALN. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 191–208. Springer, Heidelberg (2000)
Schmidt-Schauss, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48(1), 1–26 (1991)
Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., Ferilli, S.: A logic framework for the incremental inductive synthesis of Datalog theories. In: Fuchs, N.E. (ed.) LOPSTR 1997. LNCS, vol. 1463, pp. 300–321. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lisi, F.A., Esposito, F. (2004). Efficient Evaluation of Candidate Hypotheses in \(\mathcal{AL}\)-log. In: Camacho, R., King, R., Srinivasan, A. (eds) Inductive Logic Programming. ILP 2004. Lecture Notes in Computer Science(), vol 3194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30109-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-30109-7_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22941-4
Online ISBN: 978-3-540-30109-7
eBook Packages: Springer Book Archive