Skip to main content

Analytical Solution of the Blind Source Separation Problem Using Derivatives

  • Conference paper
  • First Online:
Independent Component Analysis and Blind Signal Separation (ICA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3195))

  • 1882 Accesses

Abstract

In this paper, we consider independence property between a random process and its first derivative. Then, for linear mixtures, we show that cross-correlations between mixtures and their derivatives provide a sufficient number of equations for analytically computing the unknown mixing matrix. In addition to its simplicity, the method is able to separate Gaussian sources, since it only requires second order statistics. For two mixtures of two sources, the analytical solution is given, and a few experiments show the efficiency of the method for the blind separation of two Gaussian sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jutten, C., Hérault, J.: Blind Separation of Sources, Part I: an Adaptive Algorithm Based on a Neuromimetic Architecture. Signal Processing 24, 1–10 (1991)

    Article  Google Scholar 

  2. Cardoso, J.-F., Souloumiac, A.: Blind beamforming for non Gaussian signals. IEE Proceedings-F 140, 362–370 (1993)

    Google Scholar 

  3. Bell, T., Sejnowski, T.: An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Comutation 7, 1004–1034 (1995)

    Google Scholar 

  4. Yellin, D., Weinstein, E.: Criteria for multichannel signal separation. IEEE Trans. on Signal Processing 42, 2158–2168 (1994)

    Article  Google Scholar 

  5. Nguyen Thi, H.L., Jutten, C.: Blind Sources Separation For Convolutive mixtures. Signal Processing 45, 209–229 (1995)

    Article  Google Scholar 

  6. Babaie-Zadeh, M.: On blind source separation in convolutive and nonlinear mixtures. PhD thesis, INP Grenoble (2002)

    Google Scholar 

  7. Pajunen, P., Hyvärinen, A., Karhunen, J.: Non linear source separation by selforganizing maps. In: Proceedings of ICONIP 1996, Hong-Kong (1996)

    Google Scholar 

  8. Taleb, A., Jutten, C.: Source separation in post nonlinear mixtures. IEEE Transactions on Signal Processing 47, 2807–2820 (1999)

    Article  Google Scholar 

  9. Comon, P.: Independent Component Analysis, a new concept? Signal Processing 36, 287–314 (1994)

    Article  Google Scholar 

  10. Tong, L., Soon, V., Liu, R., Huang, Y.: AMUSE: a new blind identification algorithm. In: Proceedings ISCAS, New Orleans, USA (1990)

    Google Scholar 

  11. Belouchrani, A., Abed Meraim, K., Cardoso, J.-F., Moulines, E.: A blind source separation technique based on second order statistics. IEEE Trans. on Signal Processing 45, 434–444 (1997)

    Article  Google Scholar 

  12. Molgedey, L., Schuster, H.G.: Separation of a mixture of independent signals using time delayed correlation. Physical Review Letters 72, 3634–3636 (1994)

    Article  Google Scholar 

  13. Matsuoka, K., Ohya, M., Kawamoto, M.: A neural net for blind separation of nonstationary signals. Neural Networks 8, 411–419 (1995)

    Article  Google Scholar 

  14. Pham, D.T., Cardoso, J.-F.: Blind Separation of Instantaneous Mixtures of Non Stationary Sources. IEEE Transaction on Signal Processing 49, 1837–1848 (2001)

    Article  Google Scholar 

  15. Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases. Amer. Math. Soc., Providence (1994)

    Book  Google Scholar 

  16. Papoulis, A.: Probability, Random Variables, and Stochastic Processes, 3rd edn. International Editions. Electronical and Electronic Engineering Series. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lagrange, S., Jaulin, L., Vigneron, V., Jutten, C. (2004). Analytical Solution of the Blind Source Separation Problem Using Derivatives. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30110-3_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23056-4

  • Online ISBN: 978-3-540-30110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics