Abstract
In this work, we will confront the problem of source separation in the field of astrophysics, where the contributions of various Galactic and extra-Galactic components need to be separated from a set of observed noisy mixtures. Most of the previous work on the problem perform blind source separation, assume noiseless models, and in the few cases when noise is taken into account assume Gaussianity and space-invariance. However, in the real scenario both the sources and the noise are space-varying. In this work, we present a novel technique, namely particle filtering, for the non-blind (Bayesian) solution of the source separation problem, in case of non-stationary sources and noise, by exploiting available a-priori information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahmed, A., Andrieu, C., Doucet, A., Rayner, P.J.W.: On-line Non-stationary ICA Using Mixture Models. In: Proc. IEEE ICASSP, vol. 5, pp. 3148–3151 (2000)
Andrieu, C., Godsill, S.J.: A Particle Filter for Model Based Audio Source Separation. In: Int. Work. on ICA and Blind Signal Separation, ICA 2000, Helsinki, Finland (2000)
Baccigalupi, C., Bedini, L., Burigana, C., De Zotti, G., Farusi, A., Maino, D., Maris, M., Perrotta, F., Salerno, E.: Neural Networks and the Separation of Cosmic Microwave Background and Astrophysical Signals in Sky Maps. Monthly Notices of the Royal Astronomical Society 318, 769–780 (2000)
Cardoso, J.-F., Snoussi, H., Delabrouille, J., Patanchon, G.: Blind Separation of Noisy Gaussian Stationary Sources, Application to Cosmic Microwave Background Imaging. In: Proc. EUSIPCO, vol. 1, pp. 561–564 (2002)
Casella, G., Robert, C.P.: Monte Carlo Statistical Methods. Springer, Heidelberg (1999)
Costagli, M., Kuruo˘glu, E.E., Ahmed, A.: Source Separation of Astrophysical Images Using Particle Filters. ISTI-CNR Pisa, Italy–Technical Report 2003-TR-54
Doucet, A., De Freitas, J.F.G., Gordon, N.J.: Sequential Monte Carlo Methods in Practice. Springer, Heidelberg (2001)
Everson, R.M., Roberts, S.J.: Particle Filters for Non-stationary ICA. In: Girolami, M. (ed.) Advances in Independent Components Analysis, pp. 23–41. Springer, Heidelberg (2000)
Haslam, C.G.T., Salter, C.J., Stoffel, H., Wilson, W.E.: A 408 MHz All-Sky Continuum Survey, II - The Atlas of Contour Maps. Astronomy & Astrophysics 47, 1 (1982)
The Home Page of Planck, http://astro.estec.esa.nl/planck/
Hyvärinen, A., Oja, E.: A Fast Fixed-point Algorithm for Independent Component Analysis. Neural Computation 9 (7), 1483–1492 (1997)
Kuruo˘glu, E.E., Bedini, L., Paratore, M.T., Salerno, E., Tonazzini, A.: Source Separation in Astrophysical Maps Using Independent Factor Analysis. Neural Networks 16, 479–491 (2003)
Kuruoglu, E.E., Comparetti, P.M.: Bayesian Source Separation of Astrophysical Images Using Markov Chain Monte Carlo. In: Proc. PHYSTAT (Statistical Problems in Particle Physics, Astrophysics and Cosmology) (September 2003)
Maino, D., Farusi, A., Baccigalupi, C., Perrotta, F., Banday, A.J., Bedini, L., Burigana, C., De Zotti, G., Grski, K.M., Salerno, E.: All-Sky Astrophysical Component Separation with Fast Independent Component Analysis (FastICA). Monthly Notices of the Royal Astronomical Society 334, 53–68 (2002)
Snoussi, H., Patanchon, G., Macias-Perez, J., Mohammad-Djafari, A., Delabrouille, J.: Bayesian blind component separation for cosmic microwave background observation. In: AIP Proceedings of MaxEnt, pp. 125–140 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Costagli, M., Kuruoğlu, E.E., Ahmed, A. (2004). Astrophysical Source Separation Using Particle Filters. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_117
Download citation
DOI: https://doi.org/10.1007/978-3-540-30110-3_117
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23056-4
Online ISBN: 978-3-540-30110-3
eBook Packages: Springer Book Archive