Skip to main content

Astrophysical Source Separation Using Particle Filters

  • Conference paper
  • First Online:
Independent Component Analysis and Blind Signal Separation (ICA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3195))

Abstract

In this work, we will confront the problem of source separation in the field of astrophysics, where the contributions of various Galactic and extra-Galactic components need to be separated from a set of observed noisy mixtures. Most of the previous work on the problem perform blind source separation, assume noiseless models, and in the few cases when noise is taken into account assume Gaussianity and space-invariance. However, in the real scenario both the sources and the noise are space-varying. In this work, we present a novel technique, namely particle filtering, for the non-blind (Bayesian) solution of the source separation problem, in case of non-stationary sources and noise, by exploiting available a-priori information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmed, A., Andrieu, C., Doucet, A., Rayner, P.J.W.: On-line Non-stationary ICA Using Mixture Models. In: Proc. IEEE ICASSP, vol. 5, pp. 3148–3151 (2000)

    Google Scholar 

  2. Andrieu, C., Godsill, S.J.: A Particle Filter for Model Based Audio Source Separation. In: Int. Work. on ICA and Blind Signal Separation, ICA 2000, Helsinki, Finland (2000)

    Google Scholar 

  3. Baccigalupi, C., Bedini, L., Burigana, C., De Zotti, G., Farusi, A., Maino, D., Maris, M., Perrotta, F., Salerno, E.: Neural Networks and the Separation of Cosmic Microwave Background and Astrophysical Signals in Sky Maps. Monthly Notices of the Royal Astronomical Society 318, 769–780 (2000)

    Article  Google Scholar 

  4. Cardoso, J.-F., Snoussi, H., Delabrouille, J., Patanchon, G.: Blind Separation of Noisy Gaussian Stationary Sources, Application to Cosmic Microwave Background Imaging. In: Proc. EUSIPCO, vol. 1, pp. 561–564 (2002)

    Google Scholar 

  5. Casella, G., Robert, C.P.: Monte Carlo Statistical Methods. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  6. Costagli, M., Kuruo˘glu, E.E., Ahmed, A.: Source Separation of Astrophysical Images Using Particle Filters. ISTI-CNR Pisa, Italy–Technical Report 2003-TR-54

    Google Scholar 

  7. Doucet, A., De Freitas, J.F.G., Gordon, N.J.: Sequential Monte Carlo Methods in Practice. Springer, Heidelberg (2001)

    Book  Google Scholar 

  8. Everson, R.M., Roberts, S.J.: Particle Filters for Non-stationary ICA. In: Girolami, M. (ed.) Advances in Independent Components Analysis, pp. 23–41. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Haslam, C.G.T., Salter, C.J., Stoffel, H., Wilson, W.E.: A 408 MHz All-Sky Continuum Survey, II - The Atlas of Contour Maps. Astronomy & Astrophysics 47, 1 (1982)

    Google Scholar 

  10. The Home Page of Planck, http://astro.estec.esa.nl/planck/

  11. Hyvärinen, A., Oja, E.: A Fast Fixed-point Algorithm for Independent Component Analysis. Neural Computation 9 (7), 1483–1492 (1997)

    Article  Google Scholar 

  12. Kuruo˘glu, E.E., Bedini, L., Paratore, M.T., Salerno, E., Tonazzini, A.: Source Separation in Astrophysical Maps Using Independent Factor Analysis. Neural Networks 16, 479–491 (2003)

    Article  Google Scholar 

  13. Kuruoglu, E.E., Comparetti, P.M.: Bayesian Source Separation of Astrophysical Images Using Markov Chain Monte Carlo. In: Proc. PHYSTAT (Statistical Problems in Particle Physics, Astrophysics and Cosmology) (September 2003)

    Google Scholar 

  14. Maino, D., Farusi, A., Baccigalupi, C., Perrotta, F., Banday, A.J., Bedini, L., Burigana, C., De Zotti, G., Grski, K.M., Salerno, E.: All-Sky Astrophysical Component Separation with Fast Independent Component Analysis (FastICA). Monthly Notices of the Royal Astronomical Society 334, 53–68 (2002)

    Article  Google Scholar 

  15. Snoussi, H., Patanchon, G., Macias-Perez, J., Mohammad-Djafari, A., Delabrouille, J.: Bayesian blind component separation for cosmic microwave background observation. In: AIP Proceedings of MaxEnt, pp. 125–140 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Costagli, M., Kuruoğlu, E.E., Ahmed, A. (2004). Astrophysical Source Separation Using Particle Filters. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_117

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30110-3_117

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23056-4

  • Online ISBN: 978-3-540-30110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics