Skip to main content

‘Signal Subspace’ Blind Source Separation Applied to Fetal Magnetocardiographic Signals Extraction

  • Conference paper
  • First Online:
Independent Component Analysis and Blind Signal Separation (ICA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3195))

  • 1880 Accesses

Abstract

In this paper we apply Independent Component Analysis to magnetocardiographic data recorded from the abdomen of pregnant women. In particular, we include a dimensionality reduction in the ’Cumulant Based Iterative Inversion’ algorithm to achieve a ’signal subspace’ subdivision, which enhances the algorithm’s efficacy in resolving the signals of interest from the recorded traces. Our results show that the proposed two-step procedure is a powerful means for the extraction of the cardiac signals from the background noise and for a sharp separation of the baby’s heart from the mother’s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jung, T.P., Makeig, S., McKeown, M.J., Bell, A.J., Lee, T.W., Sejnowski, T.J.: Imaging Brain Dynamics Using Independent Component Analysis. Proceedings of the IEEE 89(7), 1107–1122 (2001)

    Article  Google Scholar 

  2. Ziehe, A., Nolte, G., Sander, T., Muller, K.R., Curio, G.: A comparison of ICA-based artifact reduction methods for MEG. In: Proc. 12th Int. Conf. Biomagnetism, Espoo, Finland, pp. 895–898 (2001)

    Google Scholar 

  3. De Lathauwer, L., De Moor, B., Vandewalle, J.: Fetal Electrocardiogram extraction by blind source subspace separation. IEEE Trans. Biomed. Eng. 47(5), 567–572 (2000)

    Article  Google Scholar 

  4. Zarzoso, V., Nandi, A.K., Bacharakis, E.: Maternal and Foetal ECG Separation using Blind Source Separation Methods. IMA Journal of Mathematics Applied in Medicine & Biology 14, 207–225 (1997)

    Article  Google Scholar 

  5. Zarzoso, V., Nandi, A.K.: Noninvasive Fetal Electrocardiogram Extraction: Blind Separation vs Adaptive Noise Cancellation. IEEE Trans. Biomed. Engineering 48(1), 12–18 (2001)

    Article  Google Scholar 

  6. Cruces-Alvarez, S., Cichocki, A., Castedo-Ribas, L.: An Iterative Inversion Approach to Blind Source Separation. IEEE Trans. on Neural Networks 11, 1423–1437 (2000)

    Article  Google Scholar 

  7. Cruces-Alvarez, S., Castedo-Ribas, L., Cichocki, A.: Robust blind source separation algorithms using cumulants. Neurocomputing 49, 87–118 (2002)

    Article  Google Scholar 

  8. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley & Sons, Chichester (2002)

    Book  Google Scholar 

  9. Karhunen, J., Cichocki, A., Kasprzak, W., Pajunen, P.: On neural blind separation with noise suppression and redundancy reduction. Int. Journal of Neural Systems 8(2), 219–237 (1997)

    Article  Google Scholar 

  10. Liavas, A.P., Regaglia, P.A., Delmas, J.-P.: Blind channel approximation: effective channel order determination. IEEE Trans. Signal Processing 47, 3336–3344 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barbati, G., Porcaro, C., Salustri, C. (2004). ‘Signal Subspace’ Blind Source Separation Applied to Fetal Magnetocardiographic Signals Extraction. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_137

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30110-3_137

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23056-4

  • Online ISBN: 978-3-540-30110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics