Abstract
We consider the problem of preliminary classification of digitally modulated signals. The goal is to simplify further signal analysis (synchronization, signal separation, modulation identification and parameters estimation) by making initial separation among the most known classes of signals. Proposed methodology is mainly based on Higher Order Statistics (HOS) of the distributions of instantaneous amplitude and frequency. The experimental results emphasize the performance of the proposed set of features.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lee, T.-W., Lewicki, M.S., Girolami, M., Sejnowski, T.J.: Blind Source Separation of More Sources Than Mixtures Using Overcomplete Representations. IEEE Sig. Proc. Let. 6(4) (April 1999)
Benaroya, L., Bimbot, F.: Wiener Based Source Separation with HMM/GMM Using a Single Sensor. Journée AS Séparation de Sources et GdR ISIS, Paris (June 12, 2003)
Mansour, A., Kawamoto, M., Puntonet, C.: A Time-Frequency Approach to Blind Separation of Under-Determined Mixture of Sources. In: Proc. of the IASTED International Conference on Applied Simulation and Modelling, Marbella, Spain (September 3-5, 2003)
Li, Y., Cichocki, A., Amari, S.: Sparse Component Analysis for Blind Source Separation with Less Sensors than Sources. In: ICA 2003, Nara, Japan (April 2003)
De Lathauwer, L., De Moor, B., Vandewalle, J., Cardoso, J.-F.: Independent Component Analysis of Largery Undetermined Mixtures. In: ICA 2003, Nara, Japan (April 2003)
Albera, L., Ferréol, A., Comon, P., Chevalier, P.: Sixth Order Blind Identification of Undetermined Mixtures (BIRTH) of Sources. In: ICA 2003, Nara, Japan (April 2003)
Diamantaras, K.I.: Blind Separation of Multiply Binary Sources using a Single Linear Mixture. In: ICASSP 2000, Istanbul, Turkey (June 2000)
Diamantaras, K.I., Chassioti, E.: Blind Separation of n Binary Sources from one Observation: A Deterministic Approach. In: ICA 2000, Helsinki, Finland (June 19-22, 2000)
Azzouz, E.E., Nandi, A.K.: Automatic Modulation Recognition of Communication Signals. Kluwer Academic Publishers, Dordrecht (1996)
Soliman, S.S., Hsue, S.-Z.: Signal Classification Using Statistical Moments. IEEE Transactions on Communications 40(5) (May 1992)
Hero, A.O., Hadinejad-Mehram, H.: Digital Modulation Classification Using Power Moment Matrices. In: ICASSP 1998, Seattle, USA (May 1998)
Hipp, J.E.: Modulation Classification Based on Statistical Moments. In: MILCOM 1986, Monterey, USA (October 1986)
Proakis, J.G.: Digital Communications, 4th edn. McGraw-Hill, New York (2001)
Haykin, S.: Communication Systems, 3rd edn. John Wiley & Sons, Inc., Chichester (1994)
Levin, B.R.: Theoric Bases of Statistical Technics in Radio. Radio and Communications (in russian), 3rd edn. (1989)
Blachman, N.M.: Gaussian Noise–Part II: Distribution of Phase Change of Narrow-Band Noise Plus Sinusoid. IEEE Trans. on Inf. Theory 34(6) (November 1988)
Kendall, M.G., Stuart, A.: The Advanced Theory of Statistics. Charles Griffin (1958)
Haykin, S.: Unsupervised Adaptive Filtering. John Wiley & Sons, Inc., Chichester (2000)
Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, London (1990)
Torkkola, K.: Feature Extraction by Non-Parametric Mutual Information Maximization. Journal of Machine Learning Research 3, 1415–1438 (2003)
Chalmond, B., Girard, S.: Nonlinear Data Representation for Visual Learning. Rapport de Recherche, No 3550 (November 1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pędzisz, M., Mansour, A. (2004). HOS Based Distinctive Features for Preliminary Signal Classification. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_146
Download citation
DOI: https://doi.org/10.1007/978-3-540-30110-3_146
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23056-4
Online ISBN: 978-3-540-30110-3
eBook Packages: Springer Book Archive