Skip to main content

HOS Based Distinctive Features for Preliminary Signal Classification

  • Conference paper
  • First Online:
Independent Component Analysis and Blind Signal Separation (ICA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3195))

  • 1933 Accesses

Abstract

We consider the problem of preliminary classification of digitally modulated signals. The goal is to simplify further signal analysis (synchronization, signal separation, modulation identification and parameters estimation) by making initial separation among the most known classes of signals. Proposed methodology is mainly based on Higher Order Statistics (HOS) of the distributions of instantaneous amplitude and frequency. The experimental results emphasize the performance of the proposed set of features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, T.-W., Lewicki, M.S., Girolami, M., Sejnowski, T.J.: Blind Source Separation of More Sources Than Mixtures Using Overcomplete Representations. IEEE Sig. Proc. Let. 6(4) (April 1999)

    Google Scholar 

  2. Benaroya, L., Bimbot, F.: Wiener Based Source Separation with HMM/GMM Using a Single Sensor. Journée AS Séparation de Sources et GdR ISIS, Paris (June 12, 2003)

    Google Scholar 

  3. Mansour, A., Kawamoto, M., Puntonet, C.: A Time-Frequency Approach to Blind Separation of Under-Determined Mixture of Sources. In: Proc. of the IASTED International Conference on Applied Simulation and Modelling, Marbella, Spain (September 3-5, 2003)

    Google Scholar 

  4. Li, Y., Cichocki, A., Amari, S.: Sparse Component Analysis for Blind Source Separation with Less Sensors than Sources. In: ICA 2003, Nara, Japan (April 2003)

    Google Scholar 

  5. De Lathauwer, L., De Moor, B., Vandewalle, J., Cardoso, J.-F.: Independent Component Analysis of Largery Undetermined Mixtures. In: ICA 2003, Nara, Japan (April 2003)

    Google Scholar 

  6. Albera, L., Ferréol, A., Comon, P., Chevalier, P.: Sixth Order Blind Identification of Undetermined Mixtures (BIRTH) of Sources. In: ICA 2003, Nara, Japan (April 2003)

    Google Scholar 

  7. Diamantaras, K.I.: Blind Separation of Multiply Binary Sources using a Single Linear Mixture. In: ICASSP 2000, Istanbul, Turkey (June 2000)

    Google Scholar 

  8. Diamantaras, K.I., Chassioti, E.: Blind Separation of n Binary Sources from one Observation: A Deterministic Approach. In: ICA 2000, Helsinki, Finland (June 19-22, 2000)

    Google Scholar 

  9. Azzouz, E.E., Nandi, A.K.: Automatic Modulation Recognition of Communication Signals. Kluwer Academic Publishers, Dordrecht (1996)

    Book  Google Scholar 

  10. Soliman, S.S., Hsue, S.-Z.: Signal Classification Using Statistical Moments. IEEE Transactions on Communications 40(5) (May 1992)

    Google Scholar 

  11. Hero, A.O., Hadinejad-Mehram, H.: Digital Modulation Classification Using Power Moment Matrices. In: ICASSP 1998, Seattle, USA (May 1998)

    Google Scholar 

  12. Hipp, J.E.: Modulation Classification Based on Statistical Moments. In: MILCOM 1986, Monterey, USA (October 1986)

    Google Scholar 

  13. Proakis, J.G.: Digital Communications, 4th edn. McGraw-Hill, New York (2001)

    MATH  Google Scholar 

  14. Haykin, S.: Communication Systems, 3rd edn. John Wiley & Sons, Inc., Chichester (1994)

    Google Scholar 

  15. Levin, B.R.: Theoric Bases of Statistical Technics in Radio. Radio and Communications (in russian), 3rd edn. (1989)

    Google Scholar 

  16. Blachman, N.M.: Gaussian Noise–Part II: Distribution of Phase Change of Narrow-Band Noise Plus Sinusoid. IEEE Trans. on Inf. Theory 34(6) (November 1988)

    Google Scholar 

  17. Kendall, M.G., Stuart, A.: The Advanced Theory of Statistics. Charles Griffin (1958)

    Google Scholar 

  18. Haykin, S.: Unsupervised Adaptive Filtering. John Wiley & Sons, Inc., Chichester (2000)

    Google Scholar 

  19. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, London (1990)

    MATH  Google Scholar 

  20. Torkkola, K.: Feature Extraction by Non-Parametric Mutual Information Maximization. Journal of Machine Learning Research 3, 1415–1438 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Chalmond, B., Girard, S.: Nonlinear Data Representation for Visual Learning. Rapport de Recherche, No 3550 (November 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pędzisz, M., Mansour, A. (2004). HOS Based Distinctive Features for Preliminary Signal Classification. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_146

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30110-3_146

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23056-4

  • Online ISBN: 978-3-540-30110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics