Skip to main content

Space-Time Variant Blind Source Separation with Additive Noise

  • Conference paper
  • First Online:
Independent Component Analysis and Blind Signal Separation (ICA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3195))

Abstract

We propose a method for solving linear space-time variant blind source separation (BSS) problem with additive noise, x=As+n, on the “pixel-by-pixel” basis i.e. assuming that unknown mixing matrix is different for every space or time location. Solution corresponds with the isothermal-To equilibrium of the free energy H =U-ToS contrast function where U represents the input/output energy exchange and S represents the Shannon entropy. Solution of the inhomogeneous equation (data model with additive noise) is obtained by augmenting inhomogeneous equation into homogeneous “noise free” equation. Consequently, data model with additive noise can be solved by algorithm for the noise free space-time variant BSS problems, [1],[2]. We demonstrate the algorithm capability to perfectly recover images from the space variant mixture of two images with additive noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Szu, H., Kopriva, I.: Unsupervised Learning with Stochastic Gradient (submitted to Neurocomputing)

    Google Scholar 

  2. Szu, H., Kopriva, I.: Deterministic Blind Source Separation for Space Variant Imaging. In: Amari, S.I., Cichocki, A., Makino, S., Murata, N. (eds.) Proc. of the Fourth International Symposium on Independent Component Analysis and Blind Signal Separation, Nara, Japan, April 1-4, pp. 669–674 (2003)

    Google Scholar 

  3. Szu, H.H., Hsu, C.: Landsat spectral Unmixing à la superresolution of blind matrix inversion by constraint MaxEnt neural nets. In: Proc. SPIE 3078, pp. 147–160 (1997)

    Google Scholar 

  4. Szu, H., Kopriva, I.: Comparison of the Lagrange Constrained Neural Network with Traditional ICA Methods. In: Proc. of the IEEE 2002 World Congress on Computational Intelligence- International Joint Conference on Neural Networks, Hawaii, USA, May 17-22, pp. 466–471 (2002)

    Google Scholar 

  5. Amari, S., Cihocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. In: Advances in Neural Information Processing Systems, vol. 8, pp. 757–763. MIT Press, Cambridge (1996)

    Google Scholar 

  6. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Comp. 7, 1129–1159 (1995)

    Article  Google Scholar 

  7. Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Computation 9, 1483–1492 (1997)

    Article  Google Scholar 

  8. Cardoso, J.F., Soulomniac, A.: Blind beamforming for non-Gaussian signals. Proc. IEE F 140, 362–370 (1993)

    Google Scholar 

  9. Plumbley, M.: Algorithms for Nonnegative Independent Component Analysis. IEEE Transaction on Neural Networks 14(3), 534–543 (2003)

    Article  Google Scholar 

  10. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(21), 788–791 (1999)

    Article  Google Scholar 

  11. Parra, L., Spence, C., Sajda, P., Ziehe, A., Müller, K.-R.: Unmixing Hyperspectral Data. In: Jolla, S.A., Leen, T.K., Müller, K.-R. (eds.) Advances in Neural Information Processing Systems (NIPS12), MIT Press, Cambridge (2000)

    Google Scholar 

  12. Huang, K.: Statistical Mechanics. J. Wiley, Chichester (1963)

    Google Scholar 

  13. Szu, H.H., Kopriva, I.: Artificial Neural Networks for Noisy Image Super-resolution. Optics Communications 198(1-3), 71–81 (2001)

    Article  Google Scholar 

  14. Szu, H., Hartley, R.: Fast Simulated Annealing. Physical Letters A 122(3), 157–162 (1987)

    Article  Google Scholar 

  15. Szu, H., Kopriva, I.: Cauchy Machine for Blind Inversion in Linear Space-Variant Imaging. In: Proc. of the 2003 IEEE International Joint Conference on Neural Networks, Portland, OR, July 20-24, vol. I, pp. 747–752 (2003)

    Google Scholar 

  16. Kopriva, I., Du, Q., Szu, H., Wasylkiwskyj, W.: Independent Component Analysis Approach to Image Sharpening in the Presence of Atmospheric Turbulence. Optics Communications 233(1-3), 7–14 (2004)

    Article  Google Scholar 

  17. Chandrasekhar, S.: Stochastic Problems in Physics and Astronomy. Review of Modern Physics 15(1), 1–87 (1943)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kopriva, I., Szu, H. (2004). Space-Time Variant Blind Source Separation with Additive Noise. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30110-3_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23056-4

  • Online ISBN: 978-3-540-30110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics