Skip to main content

Hybridizing Genetic Algorithms with ICA in Higher Dimension

  • Conference paper
  • First Online:
Independent Component Analysis and Blind Signal Separation (ICA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3195))

Abstract

In this paper we present a novel method for blindly separating unobservable independent component signals from their linear mixtures, using genetic algorithms (GA) to minimize the nonconvex and nonlinear cost functions. This approach is very useful in many fields such as forecasting indexes in financial stock markets where the search for independent components is the major task to include exogenous information into the learning machine. The GA presented in this work is able to extract independent components with faster rate than the previous independent component analysis algorithms based on Higher Order Statistics (HOS) as input space dimension increases showing significant accuracy and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barlow, H.B.: Possible principles underlying transformation of Sensory messages. In: Sensory Communication, W.A. Rosenblith, MIT Press, New York (1961)

    Google Scholar 

  2. Bell, A.J., Sejnowski, T.J.: An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation 7, 1129–1159 (1995)

    Article  Google Scholar 

  3. Cardoso, J.F.: Infomax and maximun likelihood for source separation. IEEE Letters on signal processing 4, 112–114 (1997)

    Article  Google Scholar 

  4. Cichoki, A., Unbehauen, R.: Robust neural networks with on-line learning for blind identification and blind separation of sources. IEEE Transactions on Circuits and Systems 43(11), 894–906 (1996)

    Article  Google Scholar 

  5. Hyvärinen, A., Oja, E.: A fast fixed point algorithm for independent component analysis. Neural Computation 9, 1483–1492

    Google Scholar 

  6. Puntonet, C.G., Prieto, A.: Neural net approach for blind separation of sources based on geometric properties. Neurocomputing 18, 141–164 (1998)

    Article  Google Scholar 

  7. Górriz, J.M.: Algorítmos Híbridos para la Modelización de Series Temporales con Técnicas AR-ICA. PhD Thesis, University of Cádiz (2003)

    Google Scholar 

  8. Back, A.D., Weigend, A.S.: A first Application of Independent Component Analysis to Extracting Structure from Stock Returns. International Journal of Neural Systems 8(5) (1997)

    Google Scholar 

  9. Cao, X.R., Liu, W.R.: General Approach to Blind Source Separation. IEEE Transactions on signal Processing, vol 44, num 3, 562–571 (1996)

    Google Scholar 

  10. Michalewicz, Z.: Genetic Algorithms + Data structures = Evolution Programs. Springer, Berlin (1992)

    Book  Google Scholar 

  11. Rojas, F., Álvarez, M.R., Puntonet, C.G., Martin-Clemente, R.: Applying Neural Networks and Genetic Algorithms to the Separation of Sources. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 420–429. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Haggstrom, O.: Finite Markov Chains and Algorithmic Applications, Cambridge University (1998)

    Google Scholar 

  13. Schmitt, L.M., Nehaniv, C.L., Fujii, R.H.: Linear Analysis of Genetic Algorithms, Theoretical Computer Science, vol. 200, pp. 101–134 (1998)

    Google Scholar 

  14. Suzuki, J.: A markov Chain Analysis on Simple Genetic Algorithms. IEEE Transaction on Systems, Man, and Cybernetics 25(4), 655–659 (1995)

    Article  Google Scholar 

  15. Eiben, A.E., Aarts, E.H.L., Van Hee, K.M.: Global Convergence of Genetic Algorithms: a Markov Chain Analysis. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 4–12. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  16. Chryssostomos, C., Petropulu, A.P.: Higher Order Spectra Analysis: A Non-linear Signal Processing Framework. Prentice Hall, London (1993)

    Google Scholar 

  17. Lozano, J.A., Larrañaga, P., Graña, M., Albizuri, F.X.: Genetic Algorithms: Bridging the Convergence Gap. Theoretical Computer Science 229, 11–22 (1999)

    Article  MathSciNet  Google Scholar 

  18. Rudolph, G.: Convergence Analysis of Canonical Genetic Algorithms. IEEE Transactions on Neural Networks 5(1), 96–101 (1994)

    Article  MathSciNet  Google Scholar 

  19. Tan, Y., Wang, J.: Nonlinear Blind Source Separation Using Higher order Statistics and a Genetic Algorithm. IEEE Transactions on Evolutionary Computation 6 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Górriz, J.M., Puntonet, C.G., Salmerón, M., Rojas Ruiz, F. (2004). Hybridizing Genetic Algorithms with ICA in Higher Dimension. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30110-3_53

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23056-4

  • Online ISBN: 978-3-540-30110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics