Abstract
In this paper we present a novel method for blindly separating unobservable independent component signals from their linear mixtures, using genetic algorithms (GA) to minimize the nonconvex and nonlinear cost functions. This approach is very useful in many fields such as forecasting indexes in financial stock markets where the search for independent components is the major task to include exogenous information into the learning machine. The GA presented in this work is able to extract independent components with faster rate than the previous independent component analysis algorithms based on Higher Order Statistics (HOS) as input space dimension increases showing significant accuracy and robustness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barlow, H.B.: Possible principles underlying transformation of Sensory messages. In: Sensory Communication, W.A. Rosenblith, MIT Press, New York (1961)
Bell, A.J., Sejnowski, T.J.: An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation 7, 1129–1159 (1995)
Cardoso, J.F.: Infomax and maximun likelihood for source separation. IEEE Letters on signal processing 4, 112–114 (1997)
Cichoki, A., Unbehauen, R.: Robust neural networks with on-line learning for blind identification and blind separation of sources. IEEE Transactions on Circuits and Systems 43(11), 894–906 (1996)
Hyvärinen, A., Oja, E.: A fast fixed point algorithm for independent component analysis. Neural Computation 9, 1483–1492
Puntonet, C.G., Prieto, A.: Neural net approach for blind separation of sources based on geometric properties. Neurocomputing 18, 141–164 (1998)
Górriz, J.M.: Algorítmos Híbridos para la Modelización de Series Temporales con Técnicas AR-ICA. PhD Thesis, University of Cádiz (2003)
Back, A.D., Weigend, A.S.: A first Application of Independent Component Analysis to Extracting Structure from Stock Returns. International Journal of Neural Systems 8(5) (1997)
Cao, X.R., Liu, W.R.: General Approach to Blind Source Separation. IEEE Transactions on signal Processing, vol 44, num 3, 562–571 (1996)
Michalewicz, Z.: Genetic Algorithms + Data structures = Evolution Programs. Springer, Berlin (1992)
Rojas, F., Álvarez, M.R., Puntonet, C.G., Martin-Clemente, R.: Applying Neural Networks and Genetic Algorithms to the Separation of Sources. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 420–429. Springer, Heidelberg (2002)
Haggstrom, O.: Finite Markov Chains and Algorithmic Applications, Cambridge University (1998)
Schmitt, L.M., Nehaniv, C.L., Fujii, R.H.: Linear Analysis of Genetic Algorithms, Theoretical Computer Science, vol. 200, pp. 101–134 (1998)
Suzuki, J.: A markov Chain Analysis on Simple Genetic Algorithms. IEEE Transaction on Systems, Man, and Cybernetics 25(4), 655–659 (1995)
Eiben, A.E., Aarts, E.H.L., Van Hee, K.M.: Global Convergence of Genetic Algorithms: a Markov Chain Analysis. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 4–12. Springer, Heidelberg (1991)
Chryssostomos, C., Petropulu, A.P.: Higher Order Spectra Analysis: A Non-linear Signal Processing Framework. Prentice Hall, London (1993)
Lozano, J.A., Larrañaga, P., Graña, M., Albizuri, F.X.: Genetic Algorithms: Bridging the Convergence Gap. Theoretical Computer Science 229, 11–22 (1999)
Rudolph, G.: Convergence Analysis of Canonical Genetic Algorithms. IEEE Transactions on Neural Networks 5(1), 96–101 (1994)
Tan, Y., Wang, J.: Nonlinear Blind Source Separation Using Higher order Statistics and a Genetic Algorithm. IEEE Transactions on Evolutionary Computation 6 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Górriz, J.M., Puntonet, C.G., Salmerón, M., Rojas Ruiz, F. (2004). Hybridizing Genetic Algorithms with ICA in Higher Dimension. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_53
Download citation
DOI: https://doi.org/10.1007/978-3-540-30110-3_53
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23056-4
Online ISBN: 978-3-540-30110-3
eBook Packages: Springer Book Archive