Abstract
Convolutive and temporally correlated mixtures of speech are tackled with an LP-based temporal pre-whitening stage combined with the natural gradient algorithm (NGA), to essentially perform spatial separation by maximizing entropy at the output of a nonlinear function. In the past, speech sources have been parameterized by the generalized Gaussian density (GGD) model, in which the exponent parameter directly relates to the exponent of the corresponding optimal nonlinear function. In this paper, we present an adaptive, source dependent estimation of this parameter, controlled exclusively by the statistics of the output source estimates. Comparative experimental results illustrate the inherent flexibility of the proposed method, as well as an overall increase in convergence speed and separation performance over existing approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amari, S., Cichocki, A., Yang, H.: A New Learning Algorithm for Blind Signal Separation. In: Advances in Neural Information Processing Systems 8, pp. 757–763. MIT Press, Cambridge (1996)
Bell, A., Sejnowski, T.: An Information Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation 7(6), 1129–1159 (1995)
Choi, S., Cichocki, A., Amari, S.: Flexible Independent Component Analysis. Journal of VLSI Signal Processing 26(1), 25–38 (2000)
Do, M.N., Vetterli, M.: Wavelet-Based Texture Retrieval Using Generalized Gaussian Density and Kullback-Leibler Distance. IEEE Trans. on Image Processing 11(2), 146–158 (2002)
Gazor, S., Zhang, W.: Speech Probability Distribution. IEEE Signal Processing Letters 10(7), 204–207 (2003)
Kokkinakis, K., Zarzoso, V., Nandi, A.K.: Blind Separation of Acoustic Mixtures based on Linear Prediction Analysis. In: Proc. Fourth Int. Symp. on ICA and BSS, Nara, Japan, April 1-4, pp. 343–348 (2003)
Kokkinakis, K., Nandi, A.K.: Optimal Blind Separation of Convolutive Audio Mixtures without Temporal Constraints. In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Montreal, Canada, May 17-21, pp. 217–220 (2004)
Kokkinakis, K., Nandi, A.K.: Multichannel Blind Deconvolution for Source Separation in Convolutive Mixtures of Speech. Submitted to IEEE Trans. on Speech and Audio Processing (February 2004)
Lambert, R.H.: Multichannel Blind Deconvolution: FIR Matrix Algebra and Separation of Multipath Mixtures. Ph.D. Thesis, University of Southern California (May 1996)
Lambert, R.H., Bell, A.J.: Blind Separation of Multiple Speakers in a Multipath Environment. In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Munich, Germany, April 21-24, pp. 423–426 (1997)
Lee, T.-W., Bell, A.J., Orglmeister, R.: Blind Source Separation of Real World Signals. In: Proc. ICNN, Texas, June 9-12, pp. 2129–2135 (1997)
Lee, T.-W., Girolami, M., Sejnowski, T.: Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources. Neural Computation 11(2), 417–441 (1999)
Mathis, H., von Hoff, T.P., Joho, M.: Blind Separation of Signals with Mixed Kurtosis Signs Using Threshold Activation Functions. IEEE Trans. on Neural Networks 12(3), 618–624 (2001)
Varanasi, M.K., Aazhang, B.: Parametric Generalized Gaussian Density Estimation. J. Acoust. Soc. America 86(4), 1404–1415 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kokkinakis, K., Nandi, A.K. (2004). Multichannel Speech Separation Using Adaptive Parameterization of Source PDFs. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_62
Download citation
DOI: https://doi.org/10.1007/978-3-540-30110-3_62
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23056-4
Online ISBN: 978-3-540-30110-3
eBook Packages: Springer Book Archive