Skip to main content

Optimal Sparse Representations for Blind Deconvolution of Images

  • Conference paper
  • First Online:
Independent Component Analysis and Blind Signal Separation (ICA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3195))

  • 1481 Accesses

Abstract

The relative Newton algorithm, previously proposed for quasi maximum likelihood blind source separation and blind deconvolution of one-dimensional signals is generalized for blind deconvolution of images. Smooth approximation of the absolute value is used in modelling the log probability density function, which is suitable for sparse sources. We propose a method of sparsification, which allows blind deconvolution of sources with arbitrary distribution, and show how to find optimal sparsifying transformations by training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chan, T.F., Wong, C.K.: Total variation blind deconvolution (IEEE. Trans. Image Proc.) (to appear)

    Google Scholar 

  2. Kaftory, R., Sochen, N.A., Zeevi, Y.Y.: Color image denoising and blind deconvolusion using the beltramy operator. In: Proc. 3rd Intl. Symposium on Image and Sig. Proc. and Anal., pp. 1–4 (2003)

    Google Scholar 

  3. Zibulevsky, M.: Sparse source separation with relative Newton method. In: Proc. ICA 2003, pp. 897–902 (2003)

    Google Scholar 

  4. Bronstein, A.M., Bronstein, M., Zibulevsky, M.: Blind deconvolution with relative Newton method. Technical Report 444, Technion, Israel (2003)

    Google Scholar 

  5. Amari, S.I., Cichocki, A., Yang, H.H.: Novel online adaptive learning algorithms for blind deconvolution using the natural gradient approach. In: Proc. SYSID, pp. 1057–1062 (1997)

    Google Scholar 

  6. Pham, D., Garrat, P.: Blind separation of a mixture of independent sources through a quasimaximum likelihood approach. IEEE Trans. Sig. Proc. 45, 1712–1725 (1997)

    Article  Google Scholar 

  7. Kisilev, P., Zibulevsky, M., Zeevi, Y.: Multiscale framework for blind source separation. JMLR (2003) (in press)

    Google Scholar 

  8. Zibulevsky, M., Pearlmutter, B.A.: Blind source separation by sparse decomposition. Neural Computation 13 (2001)

    Google Scholar 

  9. Zibulevsky, M., Kisilev, P., Zeevi, Y.Y., Pearlmutter, B.A.: Blind source separation via multinode sparse representation. In: Proc. NIPS (2002)

    Google Scholar 

  10. Bronstein, A.M., Bronstein, M., Zeevi, Y.Y., Zibulevsky, M.: Quasi-maximum likelihood blind deconvolution of images using sparse representations. Technical report, Technion, Israel (2003)

    Google Scholar 

  11. Lewicki, M.S., Olshausen, B.A.: A probabilistic framework for the adaptation and comparison of image codes. J. Opt. Soc. Am. A 16, 1587–1601 (1999)

    Article  Google Scholar 

  12. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  13. Blomgren, P., Chan, T.F., Mulet, P., Wong, C.: Total variation image restoration: numerical methods and extensons. In: Proc. IEEE ICIP (1997)

    Google Scholar 

  14. Chan, T.F., Mulet, P.: Iterative methods for total variation image restoration. SIAM J. Num. Anal. 36 (1999)

    Google Scholar 

  15. Moscoso, M., Keller, J.B., Papanicolaou, G.: Depolarization and blurring of optical images by biological tissue. J. Opt. Soc. Am. A 18, 948–960 (2001)

    Article  MathSciNet  Google Scholar 

  16. Banham, M.R., Katsaggelos, A.K.: Spatially adaptive wavelet-based multiscale image restoration. IEEE Trans. Image Processing 5, 619–634 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bronstein, A.M., Bronstein, M.M., Zibulevsky, M., Zeevi, Y.Y. (2004). Optimal Sparse Representations for Blind Deconvolution of Images. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30110-3_64

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23056-4

  • Online ISBN: 978-3-540-30110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics