Skip to main content

Blind Deconvolution Using the Relative Newton Method

  • Conference paper
  • First Online:
Independent Component Analysis and Blind Signal Separation (ICA 2004)

Abstract

We propose a relative optimization framework for quasi maximum likelihood blind deconvolution and the relative Newton method as its particular instance. Special Hessian structure allows its fast approximate construction and inversion with complexity comparable to that of gradient methods. The use of rational IIR restoration kernels provides a richer family of filters than the traditionally used FIR kernels. Smoothed absolute value and the smoothed deadzone functions allow accurate and robust deconvolution of super- and sub-Gaussian sources, respectively. Simulation results demonstrate the efficiency of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tong, L., Xu, G., Kailath, T.: Blind identification and equalization based on second-order statistics: A time domain approach. IEEE Trans. Inform. Theory 40, 340–349 (1994)

    Article  Google Scholar 

  2. Gurelli, M., Nikias, C.: EVAM: An eigenvector-based algorithm for multichannel bind deconvolution of input colored signals. IEEE Trans. Signal Processing 43, 134–149 (1995)

    Article  Google Scholar 

  3. Xu, G., Liu, H., Tong, L., Kailath, T.: Least squares approach to blind channel identification. IEEE Trans. Sig. Proc. 43, 2982–2993 (1995)

    Article  Google Scholar 

  4. Hua, Y.: Fast maximum likelihood for blind identification of multiple FIR channels. IEEE Trans. Sig. Proc. 44, 661–672 (1996)

    Article  Google Scholar 

  5. Gorokhov, A., Loubaton, P., Moulines, E.: Second order blind equalization in multiple input multiple output FIR systems: A weighted least squares approach. In: Proc. ICASSP, vol. 5, pp. 2415–2418 (1996)

    Google Scholar 

  6. Godard, D.N.: Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Trans. Commun. 28, 1867–1875 (1980)

    Article  Google Scholar 

  7. Chi, C.Y., Chen, C.Y., Chen, C.H., Feng, C.C.: Batch processing algorithms for blind equalization using higher-order statistics. IEEE Sig. Proc. Magazine, 25–49 (2003)

    Google Scholar 

  8. Amari, S.I., Cichocki, A., Yang, H.H.: Novel online adaptive learning algorithms for blind deconvolution using the natural gradient approach. In: Proc. SYSID, pp. 1057–1062 (1997)

    Google Scholar 

  9. Cichocki, A., Unbehauen, R., Rummert, E.: Robust learning algorithm for blind separation of signals. Electronics Letters 30, 1386–1387 (1994)

    Article  Google Scholar 

  10. Amari, S.I., Douglas, S.C., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems 8, 757–763 (1996)

    Google Scholar 

  11. Cardoso, J.F., Laheld, B.: Equivariant adaptive source separation. IEEE Trans. Sig. Proc. 44, 3017–3030 (1996)

    Article  Google Scholar 

  12. Joho, M., Mathis, H., Moschytz, G.S.: On frequency-domain implementations of filteredgradient blind deconvolution algorithms. In: Proc. Asilomar Conf. Signals, Syst., Comput. (2002)

    Google Scholar 

  13. Pham, D., Garrat, P.: Blind separation of a mixture of independent sources through a quasimaximum likelihood approach. IEEE Trans. Sig. Proc. 45, 1712–1725 (1997)

    Article  Google Scholar 

  14. Zibulevsky, M.: Sparse source separation with relative Newton method. In: Proc. ICA 2003, pp. 897–902 (2003)

    Google Scholar 

  15. Bronstein, A.M., Bronstein, M., Zibulevsky, M.: Blind deconvolution with relative Newton method. Technical Report 444, Technion, Israel (2003)

    Google Scholar 

  16. Bronstein, A.M., Bronstein, M.M., Zibulevsky, M.: Relative optimization for blind deconvolution. In: IEEE Sig. Proc. (2004) (submitted), Online http://visl.technion.ac.il/bron/alex

  17. Zibulevsky, M., Pearlmutter, B.A., Bofill, P., Kisilev, P.: Blind source separation by sparse decomposition. In: Roberts, S.J., Everson, R.M. (eds.) Independent Components Analysis: Princeiples and Practice, Cambridge University Press, Cambridge (2001)

    Google Scholar 

  18. Bronstein, A.M., Bronstein, M.M., Zibulevsky, M., Zeevi, Y.Y.: Quasi maximum likelihood blind deconvolution of images using optimal sparse representations. Technical Report 455, Technion, Israel (2003)

    Google Scholar 

  19. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  20. Giannakis, G.B., Halford, S.D.: Blind fractionally spaced equalization of noisy FIR channels: Direct and adaptive solutions. IEEE Trans. Sig. Proc. (45)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bronstein, A.M., Bronstein, M.M., Zibulevsky, M. (2004). Blind Deconvolution Using the Relative Newton Method. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30110-3_71

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23056-4

  • Online ISBN: 978-3-540-30110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics